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Abstract:

A growing interest in formation flying satellites demands development and
analysis of control and estimation algorithms for station-keeping and formation
maneuvering. This thesis discusses the development of a discrete linear-quadratic-
regulator control algorithm for formations in the vicinity of the L2 sun-earth libration
‘point. The development of an appropriate Kalman filter is included as well. Simulations
are created for the analysis of the station-keeping and various formation maneuvers of the
Stellar Imager mission. The simulations provide tracking error, estimation error, and
control effort results. From the control effort, useful design parameters such as AV and
propellant mass are determined. For formation maneuvering, the drone spacecraft track
to within 4 meters of their desired position and within 1.5 millimeters per second of their
desired zero velocity. The filter, with few exceptions, keeps the estimation errors within
their three-sigma values. Without noise, the controller performs extremely well, with the
drones tracking to within several micrometers. Each drone uses around 1 to 2 grams of
propellant per maneuver, depending on the circumstances.
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ABSTRACT

A growing interest in formation flying satellites demands development and
analysis of control and estimation algorithms for station-keeping and formation
maneuvering. This thesis discusses the development of a discrete linear-quadratic-
regulator control algorithm for formations in the vicinity of the L2 sun-earth libration
point. The development of an appropriate Kalman filter is included as well. Simulations
are created for the analysis of the station-keeping and various formation maneuvers of the
Stellar Imager mission. The simulations provide tracking error, estimation error, and
control effort results. From the control effort, useful design parameters such as AV and
propellant mass are determined. For formation maneuvering, the drone spacecraft track
to within 4 meters of their desired position and within 1.5 millimeters per second of their
desired zero velocity. The filter, with few exceptions, keeps the estimation errors within
their three-sigma values. Without noise, the controller performs extremely well, with the
drones tracking to within several micrometers. Each drone uses around 1 to 2 grams of
propellant per maneuver, depending on the circumstances.
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1. INTRODUCTION

1.1 Libration Point Introduction

Discovered by Euler and Lagrange in 1772, while studying the motion of the
moon, libration points are a significant niche in the field of orbital dynamics. In the
simplest sense, libration points are points in space where the gravitational and centrifugal
forces cancel. Szebehely' studied the mathematics of the generic restricted three-body
problem, and formulated the positions and behaviors of the libration points and the
dynamics of objects in their vicinity. Barden?, and later Howell®, expanded the study of
libration point dynamics to their transitions and trajectory design.

Farquhar* initially examined control techniques for the station-keeping of
satellites orbiting a libration point. Gomez, Masdemont, and Simo® have extensively
studied dynamics and control problems involving libration points. Scheeres and Vinh®
have researched the dynamics and control of relative motion of two spacecraft in unstable
orbits. Hoffman’ used modern control techniques to perform station keeping around the
earth-moon collinear libration points.

Many future space missions are planning to use libration points. In fact, the
Microwave Anisotropy Probe® (MAP) began orbiting the sun-earth L2 point on 1 October
2001. Other future libration point missions include Stellar Imagerg, Micro Arcsecond X-
Ray Interferometry Mission'® (MAXIM), MAXIM Pathfinder'’, and possibly Terrestrial
Planet Finder'?. Further understanding of the dynamics and control of satellites in the
vicinity of libration points is essential for the success of these and many other future

space missions.




1.2 Formation Flying Introduction

Currently, formation flying spacecraft control is being extensively researched.
Flying satellites relative to one another offers mission possibilities otherwise infeasible.
Multiple satellites working together allows for more powerful telescopes, interferometers,
and other scientific data collecting instruments. Communications technology may
improve as well. With multiple satellites, risk is reduced through redundancy, so a
failure of one element does not compromise the entire mission. Also, if the spacecraft are
similar or identical, assembly line production can reduce costs.

Formation flying control can be performed in two ways--centralized or
decentralized. With centralized control, one spacecraft or processor calculates and
commands the motion of the entire formation. With decentralized control, each
spacecraft, with input from the rest of the formation, processes its own control
requirements. Although this thesis presents a centralized control approach, the
decentralized method is the basis for many references. Speyer13 first introduced a

decentralized linear-quadratic-Gaussian control method. Carpenter'* 1>

applied.this work
to formation flying satellites, and further expanded it to deal with both time-invariant and
time-varying systems. Speyer’s'® method produces identical results to the centralized
linear-quadratic-Gaussian control method, and it also minimizes data transmission.
Formation flying satellites in Earth orbit have been demonstrated. Carpenter,

Folta, and Quinn'® derived a decentralized framework for the applicability of autonomous

formation flying control for the EO-1 mission to follow Landsat-7 in low-Earth orbit.




The next step is extending formation flying missions to other points in space, such as the
sun-earth libration points.

NASA has several distributed spacecraft missions planned for the next decade and
beyond. The Magnetospheric Constellation'” will study the magnetotail of the earth.
Stellar Imager’ and MAXIM'® will image stars and black holes respectively. Alsé, the
Laser Interferometer Space Antenna'® will detect gravitational waves in an attempt to
prove elements of general relativity. All of these missions, and many more, rely on

formation flying.

1.3 Overview

In Section 2, the equations of motion for the circular restricted-three body
problem are developed and explained. From these equations of motion, the libration
points are discovered and addressed. The problem is simplified by linearizing the
equations of motion about the éollincar libration points. Then, the orbits unique to
libration points are examined.

In Section 3, the open-loop dynamics of a system are briefly explained. State
feedback control is applied to “close the loop.” The optimal control is found using the
linear-quadratic-regulator meihod. Then, the problem is simplified with an infinite
horizon assumption. The stability of the linear-quadratic-regulator is proven. In Section
4, the continuous system is sampled, and the discrete optimal control law is found. These
concepts are then applied to satellites flying in formation in Section 5.

In Section 6, an observer is introduced to estimate the states of a system by using

incoming measurements. Augmenting the system state-space for multiple satellites is




shown. The optimal method of updating the estimates is given, and the Kalman filter is
derived. A common Kalman filter algorithm is shown. The Kalman filter is adapted to
accommodate nonlinear measurements, with range, azimuth, and elevation given as an
example.

The background to the Stellar Imager mission is explored in Section 7, yielding
performance and design requirements. Special emphasis is given to the preliminary
formation, orbit, and control designs. In Section 8, the reference orbit and dynamics
specific to the sun-earth L2 point are determined from the circular restricted three-body;
however, a more realistic orbit and associated dynamics are simulated instead.
Simulations are developed to maintain a satellite on this desired reference orbit, slew the
formation to aim at another star, and reconfigure the formation to achieve better imaging
results. The simulations produce useful tracking error, estimation error, and control

effort results.




2. CIRCULAR RESTRICTED THREE-BODY PROBLEM

2.1 Equations of Motion

The classic restricted three-body problem refers to the motion of an
infinitesimally small body in the presence of two larger bodies orbiting their barycenter,
or common center of mass. Two examples of the restricted three-body problem are the
earth-moon and sun-earth systems. For the earth-moon system, the earth is the first body,
the moon, orbiting the earth, is the second body, and a satellite would be the third. For
the sun-earth system, the sun is the first body, the earth, orbiting the sun, is the second
body, and a satellite would be third. For preliminary analysis, the orbits of the moon
around the earth and the earth around the sun are assumed to be circular, have a constant
angular velocity, and have no variation in inclination from the orbital plane. When these
assumptions are made, the restricted three-body problem becomes the more specific
circular restricted three-body problem. This thesis will focus on the sun-earth circular
restricted three-body problem, although the development of equations will hold for any
three bodies.

For the development of the equations of motion, the rotating coordinate system

shown in Figure 1 will be used. The origin is at the barycenter of the two large bodies.

The first basis vector, a, , runs along the line between the two large bodies in the
direction of the smaller body. The third basis vector, a,, is in the direction of the orbit
normal. The cross product of a, and g, yields the second basis vector, a,. These

vectors form an orthogonal coordinate system.
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Figure 1. The three-body problem rotating coordinate system

The position vector of the spacecraft in the rotating frame is
r=Xa, +Ya, +Za,. 2.1)
Writing the vectors from the large bodies to the spacecraft in the rotating frame gives
r, =(X +D,)a, +Ya, +Za, (2.2)
and
r,=(X -D,)a, +Ya, +Za,, ' 2.3)
where D, is the distance from the barycenter to the largest body and D, is the distance
from the barycenter to the smaller body. Note that
D=D, +D,. 2.4
An inertial coordinate system is defined such that the origin is the barycenter, but
the basis vectors do not rotate with the system. The inertial basis vectors 7, and #, lie in

the same plane as the rotating basis vectors a, and a,; thus, 7, is identical to a,. Once

every revolution 7, is aligned with g, , and 7, is aligned with a,. With respect to the




inertial coordinate frame, the two large bodies are rotating about their barycenter with a

constant angular velocity

=0 0 of, 2.5

G
o= ‘/—ﬁ%ﬁl. 2.6)

Therefore, deriving with respect to the inertial frame

where

a, =wa, 2.7
a, =-oa, (2.8)
g, =0. 2.9)

Taking the first and second time derivatives of the position vector (Equation 2.1) with
respect to the inertial frame,
F=(X —oY)a, +(@X +Y)a, +Za, (2.10)
and
#=(X -20Y —0*X)a, + (¥ + 20X —0°Y)a, + Za,. (2.11)

Newton’s Law of Universal Gravitation for n bodies states

F,=—Gm Y iy | 2.12)

3 i
j=1 rﬁl

J#i

where F, is the total gravitational force acting on the i body, G is the universal
gravitation constant, m represents the masses of the respective bodies, and r;; is the

position vector from the j* body to the i body. Newton’s Second Law defines force as

the time derivative of momentum




F=m —+v,—-, (2.13)
dt dt
where
dr,
o=y, = —, 2.14
nEvi=E— (2.14)
and
dv, d’r
r=—=—>". 2.15
"Ta T ar (2.15)

The derivatives in Equations 2.14 and 2.15 are with respect to an inertial frame.
Assuming constant mass, then

dm.
—=0. 2.16
= (2.16)

With gravity as the only force (the restricted part of the restricted three-body problem),

substituting Equations 2.13 and 2.16 into Equation 2.12, and dividing by m;, yields

F=-GY —Lr;. (2.17)

Expanding for the three-body problem and dropping the subscript i gives the equation of
motion for a satellite in the restricted three-body problem

Gm, Gm,

s h=7p 2
| |"2|

= (2.18)
|

Substituting Equations 2.11, 2.2, and 2.3 into Equation 2.18, the equations of motion can

now be written as

_ﬂl(X‘l'Dl)_ﬂz(X-Dz) (2.19)

X -20Y -0*X = ; -
i I




¥ 2mx —oty =L _ KLY (2.20)

A
- ML pZ 221
Wl =2
where
p,; =Gm,. 2.22)

Szebehely' shows that the centrifugal plus gravitational force potential, U, exists such

that
U= lw (X2+Y2)+ (2.23)
2 Il lrzl
and
U
X -20Y =— 2.24
X (2.24)
oU
Y +20X =— 2.25
¥ Y% 2.25)
. oU
7= 2.26
7 (2.26)

2.2 Libration Points
By setting all time derivatives in the equations of motion to zero, five libration, or
Lagrange, points can be calculated. The lbcation of these points depend on the masses
and distances of the bodies; however, three points are always collinear with the two large
bodies (L1, L2, and L3), and the other two points form equilateral triangles with the two
large bodies (L4, and L5). Szebehely’ calls the point between the two masses L2 and the

point opposite the smaller body L1. However, most of today’s literature, including Wie'®




and Farquhar®, have just the opposite, with L1 being between the two masses and L2

opposite the smaller body, as shown in Figure 2.

s,

(not to scale)

Barycenter

Figure 2. Libration point locations
For the sun-earth system, it is common to use the earth-moon barycenter as the
second body rather than the earth itself, and is done so by Szebehely'. Hoffman’ shows
that the motion near the equilateral libration points is stable when the ratio of the smaller
body mass to the total system mass is less than 0.0385, and that the motion near the
collinear libration points is always unstable. Barring any other forces, an object’s orbit
around a stable equilateral libration point will eventually decay until it rests at the

libration point itself. Szebehely' mentions the Trojan asteroids sit at a sun-Jupiter

.cquilateral libration point. An object in an orbit around a collinear libration point, on the

other hand, will eventually fly away from the vicinity of the libration point.

2.3 Linearized Equations of Motion Near Collinear Libration Points

Motion around a collinear libration point is more easily expressed in a local

coordinate frame, shown in Figure 3, with the origin located at the libration point. The

10




radial direction, x, is collinear with a, , going from the sun (or largest body) through the
libration point. The cross-track direction, z, is parallel and in the same direction as a;,
the orbit normal. Crossing z with x gives the in-track (or along-track) direction, y. When
circular motion is assumed, the y direction is the tangential velocity direction of the
libration point around the system barycenter. These axes form an orthogonal coordinate
system. Motion in the x-y plane will be referred to as in-plane, and any motion in the z

direction will be referred to as out-of-plane.

a,

T

OF . 04—
o L2 X

Figure 3. Relative position with respect to L2

Next, break the position vector, r, into the libration point position vector, r,, and
the vector from the libration point to the satellite, p, where
r=ry+p, 2.27)
and p is expressed in the local coordinate frame. The individual coordinates can be

written as

X=X,+x (2.28)
Y=Y, +y (2.29)

Z=Z,+z, (2.30)

11




where X, Y, and Z, are the coordinates of the libration point.

So far, the equations of motion contain nonlinear terms, all stemming from the
potential, U. To simplify for continued analysis, these equatioqs must be linearized. To
do so, substitute Equations 2.28-2.30 into Equations 2.24-2.26 and perform a Taylor
series expansion on the partials of U, about the libration point. The series is truncated
after the quadratic terms, and the derivatives are evaluated at the libration point. This

gives equations of motion with respect to the libration point in the local coordinate frame:

X=20y—Uyx—Uyy=0 (2.31)
¥+208—Uyy—Uyx=0 (2.32)
z-U,z=0, (2.33)
where
U
Uy =— , 2.34
XX aX2 ro ( )
o*U
=—F" , 2.35
YY aY2 . ( )
U
u, =——- , 2.36
zz azg . ( )
and
o’U
U,, = . 2.37
. axoy | @37

o
The x and y motions are coupled, and the z motion is independent. Therefore, all cross-
term derivatives involving z disappear and are not shown above. Also, for collinear

libration points,

12




U, =0. (2.38)

The linearized equations of motion about a collinear libration point become

=209 -Ux=0 (2.39)
. j+2mi-U,y=0 (2.40)
-Uyz=0. (2.33)

2.4 Lissajous Orbits and Quasi-Periodic Trajectories
By building a state vector, X, consisting of the positions and velocities, the

equations of motion can be expressed in state-space notation as

% = Ax, 2.41)
where
x=[x y z x y zf, (2.42)
x=[t y z ¥ y I, (2.43)
and
( 0 0O o0 1 0 O]
0 0 0 0 1 0
0 0 0 0 0 1
A= (2.44)
Uy 0 0 0 20 0 _
0 U, 0 —20 0 0
0 0 U, 0 0 o

There exists a quasi-periodic solution to the linearized equations of motion. The
development here is very similar to that in Wie'®, Because the z motion is uncoupled,

two characteristic equations exist, the in-plane equation,

AM+@o-Uy -Uy A +Uh,U, =0 (2.45)

13




and the out-of-plane equation,

X -U, =0.

The out-of-plane equation is a simple harmonic oscillator. The eigenvalues are

As =tj\lUz| =tja,

(2.46)

(2.47)

where @, is the out-of-plane frequency. Out-of-plane motion is always periodic. The in-

plane eigenvalues are

Ao =ty-B +yBZ+BZ,

and

'13,4 =ijVﬂ1 +\Iﬁ12 +ﬂ22 =tjo,,

where @, is the in-plane frequency,

ﬂl =2m_(Uxx +UYY)’
2
and
p22 =V Uy .

Szebehely' proves that U, is always positive, whereas U ww and U are always

negative. The in-plane motion has two oscillatory poles, one stable pole, and one

(2.48)

(2.49)

(2.50)

2.51)

unstable pole. By judiciously choosing initial conditions, the stable and unstable poles

can be made to vanish. Let
0=lg ... 4l

and

P=[p, - pel,

14

(2.52)

(2.53)




where g; is the normalized right-side eigenvector corresponding to A, and p; is the

normalized left-side eigenvector corresponding to 4, , then through modal decomposition

A=QAPT

where

and
P'Q=1I.

The solution to the differential equation in Equation 2.40 then becomes
6
x(1) =e"x(0) = 3 ¢"'4,p/x(0).
i=1

Note that p x(0) is scalar. Setting
pix(0) = p;x(0)=0

leaves only oscillatory poles remaining. These conditions can be met if

o
2(0) =—=y(0),
- K

and
y(0) = —xw,,x(0),
where
o o2 +U
2mx)’
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(2.54)

(2.55)

(2.56)

2.57)

(2.58)

(2.59)

' (2.60)

(2.61)




Finally, the quasi-periodic solution to the linearized equations of motion for a collinear

libration point can be expressed simply as

x(f) =x(0)cos(wwt)+@sin(w,,t) (2.62)
() = y(0)cos(@,, /) — xx(0) sin(e,, 1) (2.63)
2(t) = z(0) cos(@,1) + z'cf)o) sin(,f). (2.64)

2
Orbits of this type are called Lissajous trajectories. A Lissajous orbit is quasi-periodic
because the ratio of in-plane frequency to out-of-plane frequency is not an integer.
Barring any forces other than the gravity of the two large bodies, a satellite with the
proper initial conditions in the circular restricted three-body setting will follow a

Lissajous orbit forever.

16




3. LINEAR QUADRATIC REGULATOR THEORY

3.1 Open-Loop Dynamics
With no control, disturbances, or perturbations, and proper initial conditions, a
satellite will follow the Lissajous orbit described above. This open-loop trajectory is
useful as a preliminary reference trajectory for a spacecraft. Generally, the open-loop
dynamic equation
X, (0)=AX,, () G.1
has the solution

A(t—ty)

X,y ()=D@—1))x,,(t,)=e X, (), (3.2)
if A is a constant matrix. The vector X, (¢) is the desired reference state at time ¢, and

®(t —t,) is the open-loop state transition matrix. It is shown by Nise? that the state

transition matrix is easily approximated by an infinite series if A is constant,

D@t —1) =" = Zg——Ak (tk_! f)" . (3.3)
3.2 State Feedback Control
Perturbations, natural, man-made, or deliberate, will require the satellite be
controlled. With the added control, the linear differential equation becomes
X = AX+ Bu, (3.4

where u is the control vector and B is the matrix that maps the control effort to the state-

space. The initial condition Xx(z,) is also given. For this thesis, the system will remain

17




time-invariant (A and B are constant matrices). The control is modeled as ideally applied

acceleration in the x, y, and z directions. Therefore,

[0 0 0]
0 00
0 0O
B= . 3.5
1 00 (3-5)
010
[0 0 1]
and
U,
u=lu, |, (3.6)
U,

where u, is the control in the x direction, u, is the control in the y direction, and u, is the
control in the z direction. The control vector, u, has the linear state feedback form
u=—-K()x, (3.7
where K is a matrix of gains that relate the states to the control. This is also known as the
control law. Closing the loop and substituting back into the differential equation yields
x=(A-BK@®))x, (3.8)
which has the solution
x(1) =D, (t,1)x(t,), 3.9
where @, (z,¢,) is the time-varying, closed-loop state-transition matrix. The state

transition matrix propagates the state from some time (in this case ¢,) to another time (in

this case #). The state error is

X()=x()-x,,(1). (3.10)

18




By differentiating Equation 3.10, it can be shown that X(¢) follows the same dynamic

constraint as the state. By superposition,

£ =(A-BK())R, (3.11)
and
() =D, (1,1,)%(,) . (3.12)
Also, the control law becomes
u=-K(@®X. (3.13)

3.3 Continuous Optimal Control

The cost function
J= j’{iT @OWE(r)+u” (¢)Va(r) Pr (3.14)

is a scalar number that represents the desired performance of the system. The first part of
the cost function deals with the state error. The matrix, W, weights the state error and
must be positive semi-definite. The second part of the cost function deals with the
control. The matrix, V, weights the control and must be positive definite and thus
invertible. Altering the matrices W and V changes the interaction between the control and
state error. For this thesis, no weight will be given to the coupling between states, the
coupling between controls, or state-control coupling. Hence, W and V will remain
diagonal.

The following development comes from Friedland”. The cost function can also

be written in the form
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s . AW oT%@) o
J= J %7 (r) u (r){o V][u(r)]dr' | (3.15)

The quadratic nature of the cost function ensures that it is always non-negative.
Optimally, both the state error and control would be Zero, as would J. Therefore, the
purpose of control is to minimize the cost function. Substituting the control law,

Equation 3.13, and the state-transition matrix, Equation 3.14, into the cost function gives

J= _[ (7 (t,)DF, (7,1, WD, (,1,)X(2,)

" (3.16)
+X (6)07 (7,1)K T VK @)D, (7,1,)%(2,) Y7
Extracting the initial conditions from both sides of the integral and compressing,
1 ’
1=%"0,)| [0l )W + KT VK@@ r)de ). @A)
Next, define
i
SCty) = [OL@.1)W + KT @VE@ o 3.1,)d7, (3.18)
%
SO
J =X (1) (t,8,)X(1,). (3.19)
Since the initial time, ?,, is arbitrary, then it holds for any time # that
J =% (OS@,t,)X(@). (3.20)
It also holds that
2
J= [ @)W + K" @VK@ K@ (3.21)

t

Using the integral-derivative theorem
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d|"¢ _POFM™E) L, dA(x) dB(x)
Z{A‘([)F (x,6)d¢ } = 2[ )Td§ F(x,A(x)) T + F(x,B(x)) ,(3.22)
then
dJ ~T T
o= oW + K" VKO RO . (3.23)
Also, by differentiating Equation 3.20,
% =&T (S (t.1, )X + &7 (S (1,1, )% + KT OS1,1,)E(@) (3.24)

which reduces to

i‘:’t- =T OlA-BK@®) S(t.t,)+5tt,)+ St NA-BEKENR®.  (3.29)

Setting Equation 3.23 equal to Equation 3.25,
—(W +K7 (t)VK(t))= (A-BK(@®) S@t,t;)+ .S"(t,tf)+ S(t,t;)(A-BK(t)), (3.26)
or
—S(tt;)=(A-BK®) S(t,t;)+ St A-BK@)+W +K" 0)VK(@®. (3.27)
The end condition
St;,t;)=0 (3.28)
may be used.

Next, we wish to find the gain matrix, K(#), which minimizes the cost function, J.
Assume that some optimal gain, K * () ,corresponds to the minimum cost function, J *.
Assume some other gain, K *+AK , corresponds to S *+AS , where AS is necessarily
positive semi-definite. For clarity, all time indices have been removed for the time
being. By proving that

J*=%X"S*X <X (S *+ASHX =X S *X + X ASX (3.29)
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for all AS, then K * is truly the gain that minimizes the cost function. From Equation
3.27,

—($*+AS )= (S *+AS A - B(K *+AK) ]+ [A - B(K *+AK)T (S *+AS)

(3.30)
+W + (K *+AK)" V(K *+AK)
Subtracting Equation 3.27 from Equation 3.30 gives

—AS =AS[A - B(K *+AK)]+[A - B(K *+AK)]" AS

. (3.31)
+AKTVAK + (K ** V — S * B)AK + AK” (VK *—B” §*)

Equation 3.31 is of the form of Equation 3.27, so the solution is

i
AS(t,tf)=ICDZ(TJ)[AKTVAK+(K*T V-S*B)AK (3.32)
t ’ .
+AKT (VK *—B" S¥)I®, (1,1)dT

where the time indices on § *, K *, and AK are omitted. Since AS must be positive

semi-definite, then the non-quadratic terms,

(K *" V -S*B)AK (3.33)
and
AKT (VK *—B" §%), (3.34)
must be zero. Setting
K*¥V-S*B=VK*-B"S§*=0, (3.35)
then
K*=V'BTS*, (3.36)

Hence, the optimal gain is computed,

K@=V 'B'S@t1t,). (3.37)
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The linear-quadratic-regulator is defined as the state-feedback control law of Equation
3.13 with the optimal gain of Equation 3.37. By back substituting Equation 3.37 into
Equation 3.27,

—S(t,t;)=S(t,t,)A+A"S(t,t;)—S(t,t;)BV B S(1,t,)+W . (3.38)

This equation is a Riccati equation and has the end condition given by Equation 3.28.
3.4 The Linear-Quadratic-Regulator

So far, the continuous controller depends on knowledge of a final time. Often, the
final time is unknown or irrelevant. The Riccati equation has an asymptotic solution

when the system is linear time-invariant, but since it is solved backwards in time, the

“anchanging” part of the solution occurs near ¢,. In other words, S varies mostly around
t. Therefore, with an infinite horizon assumption,

lim, _,.. S(t,)=0. (3.39)

PR
In the limit, the Riccati equation becomes
0=SA+A"S—-SBV'B"S+W. (3.40)

This equation is known as the algebraic Riccati equation, the solution to which is now
constant. Only the positive definite solution will be considered. From Equation 3.36, it
follows that

K=V'B'S, (3.41)
where K is also constant. The constant-coefficient control law

u(t) =—KxX(t) (3.42)
is known as a continuous time-invariant linear-quadratic regulator. Once the control

gain, K, is constant, then the solution to the closed-loop differential equation becomes
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R() =@, (t—1,)%(t,) = e* V%1 ). (3.43)

3.5 Stability of the Linear-Quadratic-Regulator

Stengel?? proves that the optimal control is always stable. First, define a positive

definite Lyapunov function

3(X,1) =%" (1)SX(2), 3.44)
where S is the positive definite solution to the algebraic Riccati equation. Stengel?
shows that for asymptotic stability, the time derivative of the Lyapunov function must be

negative definite at all times. Taking its derivative,
~ as ~ ~ ~T ~
3X,1) = 5x;-(x,t)x(t) =2%7 (1)S[AZ(?) + Bu(r)]. (3.45)

Substituting Equations 3.41 and 3.42 for u, and reducing,

8,1 =28" 1)S|A-BV'BTS k()
= iT(t){?[A ~BVB's|+[a —BV“BTS]’s}i(t). (3.46)
=%"(fsA+A"S - 2SBVBTS K(r)

From the algebraic Riccati equation (Equation 3.40),
SA+A"S-2SBV'B"S =-W -SBV'B’S ; 3.47)
thus,
8(x,1) =% W + SBV'B"Sk@). (3.48)
Because W is positive semi-definite, S is positive definite, and V is positive definite, then
the time derivative of the Lyapunov function is negative for all times. Hence, the steady-

state optimal control gain is stabilizing.




4. DISCRETE LINEAR QUADRATIC REGULATOR

4.1 Sampling a Continuous System
Often, a system is continuous, but only samples of the states and control are used.
Usually, this is the case with spacecraft. Although the spacecraft move continuously, its
position and velocity are measured in discrete intervals and computed using digital
computers. Some thrusters can be operated continuously, but most are only fired
intermittently. For most discrete systems, the sampling interval, or time step, is held
constant. Now, we wish to find some similar corresponding discrete system,
X,,=AX +Bu,, 4.1)
to our known continuous system
X(t) = AR(D) + Bu(?). 4.2)
The subscript k, refers to the vector at time k7, where T is the sampling interval. In other
words, for any vector v,
Vim = V(KT +mT). 4.3)
Also, the control vector, u, is generic and not necessarily of the form
u(t) =-Kx(1). (3.42)
The solution to the differential equation with generic u is
:
%(t) = Ot —1,)%(t,) + [ (¢ - T)Bu(r)de . (4.4)
)
Evaluating over one time interval,
t=kT+T 4.5)

and
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t, =kT.

Then,

kT+T
KT +T) = D(T)X(kT) + J’ &T +T -7)Bu(t)dr .

kT
If the control vector has the zero order hold property (piecewise-constant), then
u(?) =u(kT)
for
kT<t<kT+T,

and is constant over the period of integration. Thus,
kT+T
%, =ODX, + { fowr+T- z')Bdr:Iuk :
kT

Phillips and Nagle? use a change of variable to simplify the integral, let
o=kT+T-7.

Then the integral becomes
0 T T
- [®(0)Bdo = [®(c)Bdo = [@(z)Bdz.
T 0 0
Therefore,
T
%, = O, + [Id)(r)Bdt}uk
0

has the desired form of Equation 4.1, where
A, =®(T)

and

T
B, = [®()Bdr.
0
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4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

(4.13)
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(4.15)




4.2 Discrete Optimal Control
Next, the continuous cost function is represented as a summation of integrals,

rather than a single integral,

21 I{‘? OWE() +u” (Va() r, (4.16)

k=0 %
where k; corresponds to the final time, ¢;. Assuming piecewise-constant control from
above, then over the period of integration
X(t)=A,X, + B,u,, 4.17)
and
u()=u,. (4.18)

Substituting Equations 4.17 and 4.18 into the cost function, Equation 4.16, and reducing,

iT{(iZAT +ukBT)W(A X, +Bd“k)+ukVuk}it

k=0 A

“1y
2 [{R7 ATWA,%, + %[ A]WB,u, +u[ BJWA,Z,

= : (4.19)
+u} BiWB,u, +u;Vu, }dt

2 {[ {A%WA,, ;ﬁWB‘, ][ik]}dt

= BIWA, (BIWB,+V)|u,

Both X, and u, are constant over the period of integration and can be removed from the

integral

J= ﬁ[xk [A WA, AWB, ]dt[ik:I. (4.20)

WA, (BIWB,+V)| |u,

This can be rewritten as
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al W, M,|[x
=Sk u{{M“T il it 421
=0 d Fl L

where
Y41
W, = [AIWA,dt, (4.22)
o
V,= [(BIWB, +V)dt, (4.23)
and
L)
M, = [A]WB,dt. (4.24)

L1

These integrals remain constant as long as the sampling interval is constant; therefore,

they can be expressed as
T
W, = [AIWA,dt, (4.25)
0
T
V, = [(BIWB, +V)dt, (4.26)
0
and
T
M, =[A]WB,dt. 4.27)
0

Special care must be given to the imbedded integral, B,. The upper limit must be
altered from the time step, to the variable of integration for the outer integral when

calculating V, and M. Thus,

B, = j ®(c)Bdt = [®(v)Bd . (4.28)
0 0
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The coupled state-control weighting term, M ,, is interesting. In the continuous
system, no coupling exists (although linear quadratic regulator theory could be modified
to accommodate it). However, once sampling occurs and the system becomes discrete, a
coupling term is introduced.

Next, the cost function is modified to include a weighting on the state error at the
final time. Also, a factor of one-half is added to simplify the math. This has no effect

because optimizing J would be the same as optimizing 2J.

1 5 oW M,
I=3% 5, %, +2 [k { vl | (4.29)

Eventually, this final state error will go to zero as the final time goes to infinity, but is
necessary for the development of the theory. Next, a Lagrange multiplier is appended to

the cost function inside the summation

oo W, M,
= 2x" & X, +§{ L { MI v, ][u,,]. (4.30)

A (A%, + B, —%,,))
From Equation 4.1, the last term in Equation 4.30 is zero, so the value of the cost
function remains unchanged. The Lagrange multiplier, A, , is also called the co-state

vector. The cost function is rewritten as

k-1

1 -
I=2%8, %, +2‘,{H ~AfFea ) (4.31)
where
1L w, M,|x _
H, = %7 u:{ME. v:][ ’;]mfﬂ (A%, +Bu,), (4.32)
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and H, is referred to as the Hamiltonian. Changing the lower limit of summation from 0

to 1,
J----—-1 X, S, X, +H -1 X +kfz_l{H —/lTx} 4.33)
o ks Ok Tk 0~ M, e, = kM Xy J- .

Assume a function, f(x,,x,,...,x,), exists with a minimum,

Soin (5%, %, %,...,x,*). Alocation near the minimum can be written as

T XyseensX,) = from (%, %, %, x, %)+ o ox, + o ax, +---
axl * ax2 *

4.34)
+a—aji{ Ox, + (higher order terms)
x’l *
The first variation of f is defined as
F = F(x3%55000s %) = foain (xl*,xz*,...,x,,*)=ai‘ ox, +ﬁ-{ Ox, +-+-
ox, |, ox, |,
(4.35)

+53£_‘ &x,, + (higher order terms)
x’l *

Assuming the variation is very small, or fis very near f,_, , the higher order terms can be

1?2 for more information on the topic of

neglected. Reference Bryson and Ho* or Stenge
optimality. Furthermore, the following derivation for discrete optimal control is standard
and used in both Bryson and Ho?* and Stengel’2. Additionally, this technique could be
used to develop continuous optimal control rather than the Friedland®! method used in
Section 3.3.

Setting the first variation of the cost function (Equation 4.33) to zero will provide

necessary conditions for optimality. The first variation is
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a X Sk ikf alT X aH aH
& =2 LR, 0Ky + 28
3%, &, | T ax, ot on, M
! d . (4.36)
tlom, oa'x,].. oH
Oy _OMX |s% + %k s
+;{[a§k &, | om,

The variation with respect to the co-state has been omitted for brevity. If it were
included, it would simply lead back to the original differcnce equation constraint. To
ensure that 8J is zero, all individual variations within must be zero. The initial state
error vector and initial control vector are constant, so their variations are inherently zero
ox, =0 (4.37)
and
8u, =0. (4.38)

Evaluating the partials in Equation 4.36 and setting them to zero leaves the three vector

equations,
X, S, =M, (4.39)
A= 3’; Y L (4.40)
k
and
0= aaf: =XM,+ulV,+2, B,. (4.41)

These equations are known as the Euler-Lagrange equations. Because the final time is

arbitrary, it stands from Equation 4.39 that
A =%!S,, (4.42)

and
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At =SiuXens (4.43)
for all sampling instances. Substituting Equation 4.1 into Equation 4.43,
Apn =8, (AX, +Byu,), 4.44)
and substituting Equation 4.44 into Equation 4.41,

0=%,M,+u,V,+%;A}S,,,B, +u.B.S, B,
= il M, + A;Sde) +u: v, + BZSde)

(4.45)
Taking the transpose,
0=(Mj;+B}S,,A)X, +(V,+B.S, B)u,. (4.46)
Note that W, V, and S, , and in turn W, and V,, are at least positive semi-definite, so the
control can be found from
w, =—(V, +B}S,,,B,)" (M] +B}S, A)%,, (4.47)
which is in state-feedback form. The control law is then
u, =—-K,X,, (4.48)
where the discrete control gain matrix is
K,=(V,+B;S,.,B,)" (M} +B}S,,A,). (4.49)
Substituting the transpose of Equation 4.44 into Equation 4.40 gives
Ay =X{W, +uiM? + ZI AT +ulBD)S, A, | (4.50)
and transposing,
A =W, X, +M,u, +A}S, A, X+ALS,. Bu,. (4.51)
Substituting Equation 4.42 for the co-state and combining like terms,

$.X, = W, + A;SkﬂAd )ik +(M, + AfSHle u,. (4.52)
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Replacing the control with its state-feedback form and dropping X, from all terms leaves

the discrete Riccati equation:

Sy =W, +AdTSk+1Ad -

) . 4.53)
(M7 +B}S;,A;)" (V, +B1S,,B,)" (M7 +BjS,,A;)

This equation is solved backward in time with the known end condition, § i, - However,

just as with the continuous case, S reaches a steady-state value at the beginning. The
transient part of § occurs near the final time. If the final time goes to infinity, then § is
considered constant. Then,
lim, S, =S5,.=S, 4.549)
and the discrete algebraic Riccati equation becomes
0=W,+A’SA, —S— (M +BISA,) (V,+B;SB,)" (M] +B;SA;). (4.55)
Furthermore, the discrete control gain matrix is now constant
K,=(V,+BiSB,)" (M} +B}SA,). (4.56)
A continuous optimal control method has been found. Once the system is
sampled, with a sampling interval the same as the maneuver interval, the continuous

system is transformed into a discrete system. Finally, an optimal discrete control method

has been built.
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5. FORMATION FLYING

5.1 Uncoupled Satellite Control

So far, all the development has focused on the control of only one satellite. For

many future missions, multiple satellites will be required. Adding additional satellites to

the state-space form is done by making the matrices block diagonal and appending

additional satellite states on the state error vector. For the continuous case example from

Equation 4.2, the state error vector becomes

X, —X,n X,
X, —X X

~ 2 2 2

X = . rf = ’
X=X X;

the control vector becomes
u= [u L u 2 “es uj }' ,

the plant dynamics matrix becomes

A
A= 4, ,
AJ’
and the control-mapping matrix becomes
B 1
g=| P
B,

J
The numerical subscript refers to the satellite number, with subscript j being the last

satellite included in the single condensed equation.
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The discrete system is appended similarly. The difference equation from

Equation 4.1 remains, but

and

%1,

B,

/)

.5)

(5.6)

(5.7

(5.8

Satellites in close proximity to each other usually have the same plant dynamics sub-

matrix and control-mapping sub-matrix. Therefore,

A=A =A
Ay =Au=A,
B =B, =B,
B, =B, =B,,

(5.9)

(5.10)

(5.11)

(5.12)

for alli and j. Appending the system in this manner allows for multiple satellites, but

they remain uncoupled.
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5.2 Coupled Satellite Control

Formation flying requires that at least one of the satellites is controlled relative to
another satellite. With the uncoupled system, there is no relative control. Wagner®
shows that to control one satellite relative to another the differential equations of the two
satellites are simply subtracted. For example, if satellite 2 is controlled relative to

satellite 1, then

X, -X, =A(X, -x,)+B(u, —u,). (5.13)
This is rewritten as
X,, = Ax,, +Bu, —Bu,, (5.14)
where x,, is the relative state vector. By superposition,
%, =A%, +Bu,—Bu,. (5.15)

If the state error vector of satellite 2 is then redefined as the relative state error vector
compared to satellite 1, then
X, = A%, + Bu, — Bu,. (5.16)
Similarly for the discrete system,
Xinp =AX, +Bu, —Bu,,. 6.17)
If all additional satellites are controlled relative to the first satellite, then the continuous
state-space system formed from Equations 4.2, 5.1, 5.2, and 5.3 holds, but the control-

mapping matrix becomes

B=|-B, B, . (5.19)
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For the discrete system, Equations 4.2, 5.5, 5.6, and 5.7 remain the same, but the discrete

control-mapping matrix changes to

B, =[-B, B, . (5.20)

For both the continuous system and discrete system, the additional “drone” satellites are
now controlled relative to the first “hub” satellite. The reference trajectory of the hub
satellite is whatever stellar trajectory is desired. A Lissajous orbit around the sun-Earth
L2 point is an example. A reference trajectory of a drone satellite is whatever relative
motion or position is desired about the hub satellite. Positioning a drone satellite at a
point one kilometer in the negative along-track direction, with no relative velocity, would

have the desired reference trajectory

X,,=0 -1 0 0 0 Of. (5.21)
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6. DISCRETE KALMAN FILTER

6.1 Estimates and Measurements
Thus far, the system assumes perfect mathematical modeling and no noises or
disturbances. In real life, however, systems are not ideal. Also, the true state (or state
error) is directly implemented in the control scheme. Often, the truth is unknown and an
estimate of the state (or state error) must be used. A Kalman filter blends together state
estimates and noisy sensor measurements of the true states. This is a method of reducing
noise and providing the best estimate of the actual unknown states (or state errors).
Process noise is added to the discrete system
X, =AX,+Bu, +w, 6.1)
where w is the random process noise vector. The process noise vector is assumed to be
Gaussian white noise (zero-mean, E[w]=0) with a known covariance structure
ElwT =0, 6.2)
where Ela] is the expected value of a as defined in Brown and Hwang?. The process
noise is included to account for unmodeled disturbances, plant errors, and plant
nonlinearities. The process noise covariance matrix, Q, is diagonal and symmetric.
The measurements are expressed as a linear combination of the states (or state
erTors):
Y =X +v, (6.3)
where v is the measurement noise vector. If the satellite’s Cartesian position coordinates

are measured exactly, then
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1 00000
C=(01 0 0 0 0]. 6.4)
001000

Similar to the process noise, the measurement noise is also assumed to be Gaussian white
noise with a known covariance structure

Ep"|=R. (6.5)
The measurement noise covariance matrix, R, is also diagonal, invertible, and symmetric.
Measurement noise, or sensor noise, is included to account for the fact that sensors are
not ideal. For this thesis, there is no correlation between v and w. Eventually, the
Kalman filter will be modified to handle measurements that are nonlinear functions of the

State error.

6.2 Multiple Satellite Measurements

For multiple satellites, the measurement equation is appended such that

Yu
v =", 6.6)
Yi
and
Cl
C2
C= . . (6.7)

C;

If the type of measurements are the same for each satellite, then C, is the same for all i.

There is also an implicit assumption that measurements for one satellite are uncoupled
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from measurements for another. Similar to the state errors, however, the measurements
for the drone satellites are relative to the hub satellite. The hub satellite measurements
are relative to the origin of the coordinate system in use. If the circular restricted three-

body dynamics are in place, then the measurements would be relative to the libration

point.

6.3 Optimal Estimate Updating

As mentioned before, the true state error is not known and a state error estimate
must be used. The estimate is expressed in two ways. The a priori estimate, X,
represents the estimate prior to assimilating the measurements at time ¢,. The a
posteriori estimate, X, , represents the estimate after assimilating the measurements. The
a posteriori (updated) estimate is propagated with the same dynamic model as the actual
state error, except noise is excluded since it has zero-mean.

X, =A X, +B,u,. (6.8)

Propagating the updated estimate gives the a priori estimate at the next time step.

The optimal blending of the measurement with the a priori estimate to find the

updated estimate can be found by minimizing another cost function,
1, =2 J8 -5 P OR 20+ 0, - RG] (69)
where
P,(9)=H&, -%)&, %), (6.10)
is the covariance matrix of the estimation error before measurements are included, and

later,
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P, (+) = E[(X, —X,)(X, _ik)T] s

is the covariance matrix of the estimation error after measurements are included.

(6.11)

Minimizing this cost function has two goals. The first is to force the difference between

the updated estimate and the a priori estimate to be small, meaning the updated estimate

is close to the old estimate. The second is to force the difference between the actual

measurement and the expected measurement to be small. If both these conditions are

minimal, then the estimated state error would be very near the actual state error. If the

cost function is found to be zero, then the estimate is perfect. Taking the derivative of the

cost function with respect to the updated estimate and setting it to zero gives

aJ R R 5
aie =(xk —xk)T‘Pkl(_)_(yk _ka)TR lC=0.
k

Next, transpose the equation,
0=F" e % )-CTR (7, - C,),
and move the updated estimate term to the other side,
(B +CRCR, = B! ()%; +C"R,.
Solving for the updated estimate,
2, =B O+CRC) (B % +CRy,),

and adding and subtracting the term C” R™'C%; from the equation,

(6.12)

(6.13)

(6.14)

(6.15)

%, = (PO +C™RC) (B (%; + CTR™'C&; —C"R™'C&; +C"R™y, ). (6.16)

This reduces to
&, =%; +L(y, - C%;),

where
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L = @+C"RC)'C"R (6.18)
is the estimate gain, filter gain, or Kalman gain. The updated estimate is now expressed

as the optimal linear combination of the a priori estimate and measurements.

6.4 The Kalman Gain

If n is the number of states and m is the number of measurements, then the matrix,
(P,:1 ()+C'R7'C ), is size n by n. Usually, the number of measurements is less than the
number of states (m<n). Therefore, it is computationally easier to invert a size m by m

matrix than an n by n matrix. Rather than just simply inverting the n by n matrix, a

matrix inversion lemma is used so the only inversion is done on matrices of size m by m.

Let

F=('@+C"R'C), (6.19)
then,

P'+C'R'C=F". (6.20)
Pre-multiply both sides by F,

FP'(-)+FC'R'C=1, 6.21)

post-multiply both sides by P, (-),
F+FC'R'CP,(-) =P, (-), (6.22)

post-multiply both sides by C” ,

FCT + FC'R™'CP,(-C” = B,(DCT, (6.23)

and factor out to the left FCTR™,
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FC"R'(R+CP,(-)C")=P.(-)C". (6.24)
Post-multiply by the inverse of the m by m matrix,
FC'R™ =B, (-)CT(R+CP,(CT)", (6.25)
and post-multiply by CP,(-),
FC'R™CP,(0) =P,(CT (R+CP.(OC" ) CP.(-). (6.26)
Subtracting Equation 6.26 from Equation 6.22 reveals
F =P,(-)-P,(5)C" R+ CP,(C"] CP,(), 6.27)
or
B+ RC) =ROY-CTReCROCTT RO} 628
Substituting the result of the matrix inversion lemma, Equation 6.28, into the

Kalman gain equation, Equation 6.18, gives
L =P (—){I —c"(R+CP.(CT) P, (—)}C’R“ : (6.29)
This is rewritten as
L =R,(C Y -(R+CP,OCT ' CR.()CT R (6.30)
Factoring out the inverse term gives
L =P.(CR+CcP,CT{R+CP,0)CT)-CP.OCT R,  (6.31)
which reduces to
L, =P,C"(R+CP.(-)CT)". (6.32)

This is the common equation found in literature for the optimal Kalman gain.
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6.5 Estimation Error Covariance Propagation

Now that the estimate can be updated and propagated, the estimation error

covariance matrix must be updated and propagated as well. Going back to the definition

of the a priori estimation error covariance matrix in Equation 6.10, it stands to reason

that at the next time step
Pl;+1 =)= E[(ikﬂ - i;ﬂ )(ikﬂ - i;ﬂ )T] .
Substituting Equation 6.1 into Equation 6.33,

P.,(-)=E[(A,X, +Bju, +w—A,X, —Bu,)

(A%, +Bu, +w-A%, —Bu,)"]
which reduces to
P () =E[(A,&E, -&,)+W(A, &, -%)+wW ].

Expanding yields

P, (-)=E[A,(X, — X)X, —X, )T A;] +E[A, (X, -X, )WT] +

EIw(E, —%,)" A7 1+ E[ww" ]
Assuming the process noise and estimation error have no correlation, then
E[A,(X, —%,)w"]1=EwWE, —-%,) A} 1=0.
Also, A, has no randomness and can be removed from the expectation, so
P, (9 = AE[®, -%,)&, —%,)"]A] + E[ww"].
Then, from previous definitions (Equations 6.2 and 6.11),
Pa )= AR (DA +0.

This is the propagation equation for the estimation error covariance matrix.

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)




6.6 Estimation Error Covariance Updating
The definition of the updated estimation error covariance matrix is given in

Equation 6.11. Substituting Equation 6.17 into Equation 6.11,
P, (+) = B[, —%; — L (y, —CE ))&, — % — L, (y, ~C%)' 1. (6.40)
Next, substitute in Equation 6.3 and multiply through,

P,(+) = E[(X, —%; — L,CX, - L,v-L,CX}) (6.41)
(X, —%, - L,CX, _Lkv_LkCﬁ;)T]
Combining like terms,
Pk (‘*‘) = E[((I - ch)(ik _i;) - Lkv)((l - ch)(ik _ﬁ;) - LkV)T] ’ (6-42)

and expanding,

P, (+)=E[(I - L,C)(X, — %)X, —%, ) (- LkC)T] -
E[( - LO®, —%; V' L]1-ELv&, -%,) I -LO)'1+.  (6.43)
E[LwW'L]] '

Assuming that the measurement noise has no correlation to the a priori estimation error,

then
E[(I -LC)E, -, W L 1=E[LvEX, -%,) " (I-LC)"]1=0. (6.44)
Extracting from the expectations constant terms (over the time step) gives
P.(+) = -LOER, -%)&, ~%;) 10 ~L,C)" + LEW L.  (6.45)
Using previous definitions (Equations 6.10 and 6.5), this can be rewritten as
P.+)=(I-L,C)P,(-({I-LC)" +L,RL,, (6.46)
which is known as the Joseph formula. Multiplying through,
P.+)=P,(-)-P.(OC"L; - L,CP,(-)+L,CP,(-C"L, + LRL,, (6.47)

and substituting the Kalman gain, Equation 6.32, gives
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B(#)=R(-LCREO+RECTR+CRECT) CRECTE +

1 (6.48)
P,(OCT(R+CP.(-)CT)' R, - P.(CTL

Factoring P, (-)C” to the left and L; to the right yields
k 'k

P+ =P -LCP(-)
1 1 .(6.49)
+P,(-)CT {R +CP.(CT ) CP,()CT +(R+CP,(CT]'R- I}L,f

Further factoring inside the braces reveals

P(+)=PF()-LCAR()+

P, (—)CT{R+CP,, " V' (R+CP,()CT )—I}Lf (6.50)
and

P,(#)=P,(-)-LCP,()+P,(CI-1}L;. (6.51)
Thus,

P.(+)=P.()-LCP,(-)=(I - LC)PR,(-) (6.52)

is the update equation for the estimation error covariance matrix. The Joseph Equation,
Equation 6.46, is numerically stable, as it preserves a positive definite P, (+) for any
gain. Equation 6.52 is correct only for the exact optimal gain. Truncation and round-off

errors may lead to a non-positive definite P, (+).

6.7 Kalman Filter Algorithm

Brown and Hwang?® give the following algorithm for the Kalman filter:
1. Enter prior estimate, X, , and its error covariance, P, (-).
2. Compute Kalman gain,

L, =P,()CT(R+CR,()CT)". (6.32)




3. Update estimate with measurement,

%, =% +L,(y, —c%;). (6.17)
4. Compute error covariance for updated estimate,

P.(+) = -LO)P.(). (6.52)
Here, Equation 6.46 may be substituted for Equation 6.52 to avoid truncation and round-

off errors.

5. Propagate estimate forward,
X,.,=AX,+B,u,. (6.8)
6. Propagate error covariance forward,
Py =AR(H)A; +0. (6.39)

7. Repeat.

6.8 Adjusting for Continuous System Noise

In Equation 6.1, noise is appended to the discrete system. If noise is appended to
the continuous system,
%) = AX() + Bu(®) +w_(1), (6.53)
where the Gaussian white noise strength is
Elw,(Ow, (1)] = Q. (1)5(t 1), 6.54)
then it must be discretized to match the form in Equation 6.1. From Section 4.1, we

know the discrete process noise vector, w, is determined by

w=[0@w, (T)dr. (6.55)

47




Substituting Equation 6.55 into Equation 6.2 gives
TT
Q=E[ww']= E[IJ(I)(Tl w, (T, )WcT (7,)®" (1,)dr,d, il .
00
Moving the expectation inside the integral and removing non-random processes

0=

© Sy

T

[o@)Ew. @)W Jr,)0" @, )drdr,
0

and substituting Equation 6.54 into Equation 6.57 yields

0=

© Gy N

T

o), )5, —7,)0" (z,)dr,dr, .
0

According to Maybeck?’, this reduces to

Q= [®()Q0. @' @)dr.
0

(6.56)

(6.57)

(6.58)

(6.59)

Given the Gaussian white process noise strength, Equation 6.59 can be used to convert it

to the form needed in the discrete Kalman filter (Equation 6.39).

6.9 Nonlinear Measurements

Often, the exact Cartesian position coordinates cannot be measured directly, or even

as a linear combination. The Kalman filter can be easily adapted to account for such

nonlinearities. The measurement equation changes from the linear form, given in

Equation 6.3, to the nonlinear form,

Yy, =mX,)+v,
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where m(X, ) is the vector containing nonlinear functions of the state error. The values
of m(X,) come directly from the sensor measurements. An estimated measurement is
calculated by
¥. =m(X;). (6.61)
The estimate update equation (Equation 6.17) is modified to take into account the
nonlinearities, by
X, =%, +L, (Yk —9k)' (6.62)
Note that Equations 6.62 and 6.17 are identical for the linear case when
¥y, =Cx;. (6.63)
Usually the state vector is used in the measurement rather than the state error
vector,
Y =m(x,)+v, (6.64)
where
x, =%, +x;7. (6.65)
The subtraction in Equation 6.62 ensures that the result is the same. However, special
consideration must be given to the measurement estimate, Equation 6.61. The
substitution,
¥ =m(xy), (6.66)
where
X, =%; +x;7 6.67)

must be made.
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The Kalman gain (Equation 6.32) is a function of the linear coefficient matrix, C.

In the nonlinear case, C can be replaced with H, where

g =4m (6.68)

or

H=@| : (6.69)
dx, |

H is the derivative of the nonlinear vector function, m, with respect to the state or state
error vector, evaluated at the a priori estimate. When H is calculated, the a priori

estimate is the best known estimate at the time. For the linear case,

dm
H = =C. 6.70
&, (6.70)

£

Calculating H requires taking the derivative of a vector with respect to another

vector. If there are two vectors

a=[a, - a,f (6.71)
and
b=[p, - bJ, (6.72)
then
E Y
ob, ob, ob,
da |90 94 94,
P €73
ay duy | da
| 0b, b, ab, |
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Modifying the Kalman gain, Equation 6.32, to include the first-order

approximation of the nonlinearities, results with
T T Y!
L =P.OH"(R+HP.OHT)". (6.74)
Also, to compute the updated estimation error covariance the same substitution is made

P =U-LHPE). 6.75)

6.10 Range, Azimuth, and Elevation

For satellites, a ranging system that gives the scalar distance between the satellite
and Earth, or two satellites, is common. In addition to the range, two angles, azimuth and
elevation, are also measured. With these three measurements, the position can be
determined.

For the drone satellites, positions are determined relative to the hub satellite.
Range is scalar, so whether it comes from a sensor on the hub or the drone is
unimportant. Azimuth and elevation, on the other hand, usually come from sensors on
the drone spacecraft. They are in the frame of reference of the local coordinate system
centered on the drone. Because the states of the drone spacecraft are represented with
respect to the hub spacecraft, and the angles are with respect to the drone spacecraft, a
coordinate transformation is required. However, if the local coordinate system on the
drone is oriented the same as the reference coordinate system on the hub (b; is aligned
with x, b, is aligned with y, and bs is aligned with z), the position of the drone can be

determined from simple trigonometry.
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Hub

Figure 4. Range, azimuth, and elevation
For convention positive azimuth is defined as counter-clockwise from the b, direction in
the b;-b, plane. Positive elevation is defined from the b;-b; plane upwards in the positive

bs direction. The position of the drone relative to the hub is then

x =rcos(el)sin(az) (6.76)
y = -rcos(el)cos(az) 6.77)
z =-rsin(el), (6.78)

where r is the range, el is the elevation, and az is the azimuth.

For one spacecraft,

m=[r el azf , (6.79)
where
x
r= [x y z]r y =\/x2 +y2 +z%, (6.80)
b4
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and

az=sin"[

X

rcos(el) ]

(6.81)

(6.82)

Clearly m is a nonlinear function of x, y, and z. From Equation 6.69 and Equation 6.73,

Evaluating the partials,

I S S
ox dy dz dx dy Oz
ox dy dz Ox dy o2
daz o0Oaz daz Odaz daz Jdaz
ox dy Oz Ox Ody 0z

o _x

ox r

o_y

dy r

o _z

dz r

del _ xz

ox r’cos(el)

del ¥z

oy s cos(el)

2

1_z
ael__ r r’
oz cos(el)
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(6.83)

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)




and

. 1 _ x2 B x222
daz _|\rcos(el) r’cos(el) r’cos’(el)

= 6.90
ox 52 2 (6.90)
[1_-r2 cos’ (el
el)
)
3 5 3
daz _\r cos(el) r’cos 1(.el) 691)
oy 52 2
1—2
[ r’ cosz(el)]/
-2z 27°
—XxZ _x( r2 * l‘4 )
r’cos(el)  2rcos’(el)
daz _ (6.92)
0z 2 5
[ p? cosz(el)]}/
or or or Jdel Odel Oel Odaz daz OJdaz
—_— i — = e—— 2 — I e— s —— = = = =0. 693
ox dy 0z ox dy dz ox dy OZ 6.93)

For multiple spacecraft, H is appended in a block diagonal fashion, consisting of the H’s

from the individual satellites.

For the hub satellite, the same method works, assuming that its local coordinate

frame from which azimuth and elevation are measured is oriented identically to the

coordinate system the motion is based on. For the circular restricted three-body problem,

the libration point would act as the “hub,” and the hub spacecraft would act as a “drone.”

Realistically, sensors cannot detect the libration point, so the origin of the local

coordinate system is translated in the negative radial direction to the earth. Thus, the

earth acts as the “hub” and the hub spacecraft would act as a “drone.” Because the local
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coordinate system undergoes only translation, the dynamics remain the same, but initial
conditions must be altered appropriately.

For the local coordinate system centered on the drone spacecraft to always be
oriented the same as the hub coordinate system, spacecraft attitude is not considered.
Realistically, the sensors measuring azimuth and elevation would be fixed at a certain
location on the spacecraft. The attitude control system and the position control system

would be tightly coupled.
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7. STELLAR IMAGER

7.1 Mission Background
Stellar Imager (SI) is the concept for a space-based, UV-optical interferometer,

829 The purpose of the mission is to view many

proposed by Carpenter and Schrijve:
stars with a sparse aperture telescope in an attempt to better understand how stars work.
Hopefully, SI will further the understanding of the various effects of stars’ magnetic
fields, the dynamos that generate them, and the internal structures and dynamics of stars.
With such information, a model could be developed to help forecast solar activity and
understand the effects of stellar magnetic activity on astrobiology and life in the
Universe. Such a model could also help us anticipate long-term Maunder minima and
grand maxima occurrences of the sun, which can change the overall global temperatures
causing crop failures. It could also help predict short-term solar activity (flares) that can
disable satellites, knock out power grids, increase the speed of corrosion of oil pipelines,
and jeopardize astronauts from particle radiation.

According to Rarogiewicz®’, an interferometer is an instrument that measures
light waves by way of interference phenomena. Light from a single source is “picked
off’ by multiple flat (or spherical) mirrors, and then combined in such a way that they
interfere with each other. From this induced interference, extremely small measurements
are made. For SI, the light waves being utilized are in the ultra-violet frequency range.

SI has two primary science goals—imaging of stellar surface activity and

asteroseismology. Currently, the sun is only one piece of data, and thus provides for

insufficient constraints on theories of dynamos, turbulence, structure, and internal
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mixing. More future missions are planned to find and image planets in other solar
systems using IR-interferometry. SI will study the central stars of these solar systems to

determine the impact on the habitability of the surrounding planets.

7.2 Performance Goals and Design Requirements

Carpenter® has outlined three primary performance goals: “1) Image a
substantial sample of nearby dwarf and giant stars representing a broad range in magnetic
activity, obtaining a resolution of order 1000 total pixels, 2) study a sample in detail,
revisiting over many years, and measure sizes, lifetimes, and emergence patterns of
stellar active regions, surface differential rotation, ficld dispersal by convective motions
and meridional circulation, directly image the entire convection spectrum on giant stars
and supergranulation, and 3) enable asteroseismology, using low to intermediate degree
non-radial modes to measure internal stellar structure and rotation.” The first goal states
that the interferometer must view multiple stars, which implies that it can aim in different
directions. The second goal forces the mission to have a lifetime of at least 10 years.

For stellar surface activity, ultra-violet images are necessary to differentiate
between bright spots (strong magnetic ficlds) and the surrounding stellar surface.
Integration time is the amount of time the interferometer must stay focused on the star to
avoid smearing due to rotation, proper motions, and activity evolution. For surface
imaging, the integration times will vary from hours for dwarfs, to days for giants. For
asteroseismology, the integration times will vary from minutes for dwarfs, to hours for

giants.
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7.3 Preliminary Mission Design

A preliminary mission design for the SI mission was developed at the Integrated
Mission Design Center (IMDC) at Goddard Space Flight Center. The leading concept for
SI is a 500 meter diameter, Fizeau interferometer composed of 30 small drone satellites
and one hub satellite. Each of these drone satellites will have a mirror that reflects the
incoming light back to the hub. The Fizeau type refers to the method of combining the
incoming light beams. After recombining the light beams into useful data, the hub will
transmit this information back to Earth.
7.3.1 Formation Design

Through simulation, Allen and Rajagopal®® determined that 30 drones with a
maximum distance of 500 meters between any two elements would provide useful data.

The following figure summarizes their efforts.

Figure 5. Simulated interferometric images of a sun-like star at 4 parsecs
The object on the bottom right is a model stellar image of a sun-like star 4 parsecs away.
The other images are simulated results of different size and shape interferometers

viewing the model. The first row has 6 elements, or drone satellites, and the second row
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has 12. The satellites are arranged in a Y-formation. The third row has 30 elements
arranged in a Golomb®' rectangle configuration. The first and third columns have a
maximum baseline, or distance between any two elements, of 250 meters. The second
and fourth columns have a maximum baseline of S00 meters. The first two columns
assume the formation is stationary and takes a snapshot of the model. The third and
fourth columns assume the formation rotates 24 times in 15 degree increments. Several
conclusions can be drawn from the figure. First, with more drone satellites, the
interferometer recreates a better image of the model. Second, the larger the maximum
baseline, the better the model is recreated. And third, the more snapshots that are taken,
based on rotations of the formation, the more accurate the image. It has been determined
that 30 drone satellites with a maximum baseline of 500 meters provide enough
resolution for useful scientific data. However, for some stars, a second snapshot may be
necessary, requiring the formation to reconfigure once with a 90 degree rotation.

A 30 element Golomb®' rectangle can be imagined as a 30-by-30 non-diagonal
matrix made up of zeros and ones, with ones representing elements. Every row and
column has one and only one element in it. Although this explanation gives the image of
the elements, or drones, lying in a plane, they actually lie on the surface of a sphere.

The hub satellite lies halfway between the surface of the sphere containing the
drones and the origin. Focal lengths of both 0.5 km and 4 km are being considered. This
would make the radius of the sphere either 1 km or 8 km. The following figures clarify

the two design options.
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Drones

500 m Sphere Origin
—A
Hub 500 m

500 m (not to scale)
Figure 6. Satellite formation with focal length 0.5 km

Drones

4 Sphere Origin
el ——F
Hub 4 km

500 m (not to scale)
Figure 7. Satellite formation with focal length 4 km

7.3.2 Orbit Design

The type of orbit and location in space is an important part of mission design. For
SI, the options considered were a low-Earth orbit, an Earth-following orbit, and a
Lissajous orbit at a sun-Earth libration point. The strong gravity gradient for a low-Earth
orbit causes increased difficulty for the formation flying precision necessary for SI. Also,
scattered light from the proximity of the Earth would disrupt the interferometry. Because
of the length of the mission (10 years minimum) and the large number of satellites (31),
an individual satellite failure is probable. Replacements will be necessary and upgrades
are likely. Re-stocking the formation in an Earth-following orbit is cost prohibitive. A

similar problem exists for orbits around the .3, L4, and LS sun-Earth libration points. At




L1, between the Earth and the sun, SI would have to deal with stray light coming from
both the sun and the Earth. However, at L2, the sun and the Earth are on the same side of
SI, reducing unwanted light and enhancing data collection. The best orbit choice for the
formation is a Lissajous orbit around the sun-Earth L2 point. The amplitude of the
Lissajous orbit will be about 600,000 km, but is not critical to the mission. With this
orbit, ST will be able to cover the entire sky every half year while maintaining an aim
perpendicular to the sun. For useful imaging, SI must aim within 10 degrees of
perpendicular from the sun.

7.3.3 Control Design

To function properly, SI will need to accommodate a wide range of control
functions. The formation must slew about the sky requiring movement of a few
kilometers and attitude adjustments of up to 180 degrees. While imaging, though, the
drones must maintain position within 3 nanometers of accuracy in the direction radial
from the hub and within 0.5 millimeters of accuracy along the sphere surface. The
accuracy required for attitude control while imaging is 5 milli-arcseconds tip and tilt
(rotations out of the surface of the sphere). The rotation about the axis radial from the
hub (rotation within the sphere) is a much less stringent 10 degrees.

Leitner and Schnurr®? in the IMDC propose a three-tiered formation control
approach. The first tier is the rough control using radio frequency (RF) ranging and
modified star trackers for sensors and thrusters for actuators. The relative positions will
be controlled to within a few centimeters. This level will drive lost-in-space
emergencies, formation initialization, large translations due to formation slewing,

collision avoidance, and Lissajous orbit maintenance. The modified star trackers will use
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visual navigation techniques to initialize and coarsely maintain the formation. The RF
ranging system will provide range measurements, and the modified star trackers will
provide azimuth and elevation measurements. The actuators for this tier will be four low-
thrust, high specific impulse (Isp) thrusters. The thrust level will be on the Newton to
milli-Newton order of magnitude. This thesis is primarily concerned with the first-tier of
the control structure.

The second tier is the intermediate control with a modulated laser ranging system
as sensors and thrusters as actuators. The relative positions will be controlled to within
50 microns at this tier. This level will drive primary attitude adjustments and small
translation maneuvers. Twelve 10-100 micro-Newton Indium Field Emission Electric
Propulsion (FEEP) thrusters will be used for this level. This propulsion technology is
currently available, but by 2015 should be vastly improved. Basically, this tier functions
to smooth the transition from the rough control of the first-tier to the fine precision
control of the third-tier.

The third-tier is the fine precision control. At this level, the satellites themselves
will not move, but rather the mirrors will be adjusted by extremely accurate mechanical
devices with an accuracy in the nanometer range. Rather than having a traditional sensor
to determine measurements, phase diversity and wave-front error (WFE) sensing
algorithms, using data from the incoming light beams, will determine the needed control.
Currently, phase diversity and WFE sensing are in their infancy for use with spacecraft

and formation flying concepts.
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7.3.4 Other Subsystem Design Considerations

Current launch vehicles have the capability to deploy the hub and drones to the
near L2. The preferred option from the IMDC is a Delta IIT 3940-11 to carry the hub and
a Delta IV 4450-14 to carry all 30 drones and a dispenser. Both the dispenser and the
hub would have a discardable hydrazine propulsion system to correct launch vehicle
errors and aid in insertion into the Lissajous orbit. Initial total mass assumptions are 100
kg for each drone satellite, 550 kg for the hub, and 480 kg for the dispenser. The launch
vehicles mentioned can easily accommodate such masses with plenty of margin.

The hub-drone setup lends itself to a centralized method of communications and
data handling. The drones would talk to the hub, and the hub would process information
and talk to the Earth. Relaying the information from the hub to the Earth would be
enhanced by a central communications satellite at L2 for all missions flying there. The
computer processing power required for a centralized approach would be immense, but
may not be a problem by 2015. Estimated power requirements could be handled by
body-mounted solar arrays on both the drones and the hub. The only challenge for the
thermal system would be holding the mirror temperatures constant. With precision
needed at the nanometer level, it is imperative to keep the mirrors isothermal to avoid

contraction or expansion due to heating.
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8. SIMULATION

8.1 Background

An essential design consideration for Stellar Imager is how much on-board fuel is
required to complete the mission. This thesis focuses on the preliminary analysis of the
position control of the formation to determine the fuel requirements. All spacecraft are
considered “black boxes,” and satellite attitudes are neglected. All satellites in the
formation are considered identical, so Equations 5.9-5.12 are valid. Also, the drones are
all controlled with respect to the hub, so the coupled satellite control equations in Section
5.2 are used. Three different scenarios make up the position control problem—
maintaining the Lissajous orbit, slewing the formation to aim at another star, and
reconfiguring the formation to take another snapshot of a star when necessary. These
three scenarios are treated independently.
8.1.1 Earth-Sun L2 Circular Restricted Three-Body Dynamics

Specific numerical values are needed to build the dynamics matrix in Equation
2.44 for motion of a satellite in the vicinity of the sun-earth L2 point. Table 1
summarizes the constant parameters in the sun-earth system, given by the Astronomical

Almanac™.




Parameter Equation Value
Mass of the sun (m,,,) N/A 1.9891e30 kg
Mass of the earth (m,,,,;) m, 5.9742¢24 kg
332946.0
Mass of the moon (m,,,,,) m, . ¥0.01230002 7.3483¢22 kg
Universal Gravitation Constant N/A 0.4980621312
G) m’
kg —day*
Astronomical Unit (AU and D) N/A 1.49597870¢11 m
Distance from system Moyt Mo AU 4.54841e5 m
barycenter to sun (D,) m, +m,,+m,,,

Distance from system barycenter m, * AU 1.49597e11 m

to the earth-moon barycenter
(D)

m.ﬂm + mearth + mmoon

Angular velocity of system (w) G*(m, +m,,+m,,) 0.017202 rad
AU’® day

(Equation 2.6)

Table 1. Constant parameters of the sun-earth circular system

Based on the angular velocity of the system, the period of rotation comes out to be 365.26

days, or one year, as expected.

Szebehely’ gives the location of the L2 point (which he calls L1) for the sun-earth

system. Note that the ‘x’ direction of his rotating coordinate frame is opposite of mine,

leading to the negative value of X,. From this information, the partial derivatives in

Equations 2.34-2.36 can be calculated. The results are summarized in Table 2.
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Parameter Value

X, AU *-1.0100701938 m

2 0

Z 0

Uxx 0.00263065454908155 724
day

Up 10.000871456562957885 24
day

Uz -0.00116737037068138 'adz

Table 2. Constant parameters of the sun-earth L2 point

Using the above values, the dynamics matrix can now be determined

0 0 1 00
0o 0 0 1 0
0 0 0 o0 1
0 0 0 200
Uy O -20 0 0
0 U, 0O 0 0

(2.44)

Additional parameters are needed to determine the quasi-periodic reference orbit

described by Equations 2.62-2.64. Table 3 lists these parameters.




Parameter Value

In-plane frequency (@,,) 0.0354038676524272 ‘%{
y

Out-of-plane frequency (@,) 0.0341668021723043 %4
day

Non-oscillatory poles nulling factor (x) 3.18878901709247

Table 3. Parameters for quasi-periodic orbit about sun-earth .2
The in-plane period is 177.47 days, and the out-of-plane period is 183.90 days. Every
year, the formation makes roughly two revolutions both in-plane and out-of-plane.

The reference initial conditions listed in Table 4 correspond to the quasi-periodic

Lissajous reference trajectory for one year shown in Figure 8.

Initial condition Value
%,y (0) 0 km
Y, (0) 600000 km
2,4 (0) 0 km

% (0) | 6661.563 <™
day
Yrer (0) .
y
2y () -20500.081 <™

Table 4. Reference initial conditions corresponding to Figure 8
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Figure 8. One year quasi-periodic reference orbit around L2

In Figure 8, the origin is the L2 point, the red circle is the starting reference position, and
the red ‘x’ is the ending reference position after 365 days. The scale is in kilometers.
8.1.2 Generator

So far the dynamics of a satellite in the vicinity of the sun-earth L2 point have
been approximated with the circular restricted three-body assumptions. These
assumptions only account for gravitational forces from the sun and Earth. The moon is
also included, but not as an independent body. The masses of the earth and moon are
combined and assumed to be at the earth-moon barycenter. The motion of the sun and
the earth-moon barycenter is also assumed to be circular around the system barycenter.

Realistically, the earth has a slightly elliptic orbit around the sun. The effect of
the moon’s gravity will vary depending on the exact position of the moon. Gravitational
forces from other planets in the solar system affect the motion of satellites as well. The

most significant non-gravitational force at the sun-earth L2 point is solar radiation
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pressure, ignored in the circular restricted three-body problem. Dr. Kathleen Howell*,
from Purdue University, has a program named Generator that creates much more realistic
Lissajous orbits than those derived from the circular restricted three-body problem.
Using ephemeris files, Generator takes into account the effects of eccentricity, an
independent moon, the other planets of the solar system, and solar radiation pressure.
The resulting Lissajous orbit can then be used as a more accurate reference orbit.
Another benefit of using a Generator derived reference orbit is that the origin of the
rotating reference frame is based on the earth instead of the libration point. Thus, sensors
can be modeled to measure range and angles from the hub satellite to the earth, rather
than from the hub to the imaginary libration point.

With the initial conditions listed in Table 5, the Generator reference orbit is

shown in Figure 9.

Initial condition Value

%y (0) 1457251.466 km

) 572731249 km

20 ) 71916.835 km

Xrg (0) 6779.986 <™
day

Yrg (0) _5701.628
day

2,4 (0) 79.552 <™

day

Table 5. Reference initial conditions corresponding to Figure 9
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x 1tfference for hub satellite x 10

-0.5

Figure 9. Generator based 359 day reference orbit around L2

The origin in Figure 9 is the earth. The reference orbit begins at the red circle and, after
359 dajs, ends at the red ‘x’. The scale is in kilometers. The simulation length of 359
days is used to synchronize the simulation time with the output of Generator.

While using a Generator based reference orbit, the dynamics of Equation 2.44
(based on the circular restricted three-body problem) do not hold. However, in addition
to providing the reference positions and velocities, Generator also numerically computes
and outputs the dynamics matrix, A, for a single satellite at each epoch. Anderson®
explains the transformation of the dynamics matrix from the inertial reference frame used
in Generator to the outputted Earth-centered rotating frame used in the simulation.
Special consideration must be given to the units of length and time. Generator uses
velocities with units of meters per second. These must be converted to units of
kilometers per day for use in the simulation. Also, the time unit within the dynamics

matrix must be converted from seconds to days.
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8.2 Lissajous Orbit Simulation

Following the Lissajous orbit is not a problem of formation control, but rather a
problem of maintaining an orbit. Therefore, only the hub satellite needs simulation to
determine the amount of control and fuel needed to maintain a Lissajous orbit. The
results can be extended similarly to other satellites in the formation. The simulation does
permit altering the number of satellites, but for each satellite, the time it takes to run the
simulation increases proportionally.

8.2.1 Lissajous Orbit Simulation Development

First, the reference orbit is loaded and converted to the proper units from the
Generator output. The Matlab file used to change the Generator reference orbit output to
a form used in Matlab is given in Appendix A. Next, the initial conditions are defined.
For this research, the satellite is assumed to start with no position or velocity errors. This
means that the satellite initial conditions are identical to the reference initial conditions
given in Table 5. In the simulation, the time step or maneuver interval, 7, can varied by
integer values of days, but is set at one day here.

At the beginning of each epoch, the corresponding single satellite dynamics
matrix is taken from the Generator output and converted to proper units. The Matlab file
used to change the Generator dynamics output to a form used in Matlab is given in
Appendix B. The continuous control-mapping matrix used is the same as Equation 3.5.
The state transition matrix is approximated by Equation 3.3, truncating after the quadratic

term. The continuous state weighting matrix is chosen to be
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[1¢6

1e6
1le6

1e3
1€3

1e3

and the continuous control weighting matrix is chosen to be

0

le—6

le—6

le—6

8.1)

8.2)

8.3)

The strength of the process noise is set at a value large enough to be noticed, but not so

much as to constrict or destabilize the system. The system is then discretized using
Equations 4.14, 4.25, 4.26, 4.27, and 4.28. The discrete process noise covariance is

calculated by Equation 6.59. The measurement noise covariance matrix for the hub

satellite is chosen to be

0.1°

[

03 Y
1500000
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The first term in the measurement noise covariance matrix assumes range measurements
from the earth to the hub within 0.1 km or 100 meters. The second and third terms
assume that the arc lengths corresponding to the azimuth and elevation angles are three
times less accurate than the range measurements. To find the angular accuracy, simply
divide the accuracy of arc length by the range. The L2 point is approximately 1.5 million
kilometers from the earth and is used as a rough constant range.

If multiple satellites are simulated, then Equations 5.7, 5.20, and 6.7 are
implemented. Also for multiple satellites, the discrete state weighting matrix, discrete
control weighting matrix, discrete state-control couple weighting matrix, and discrete
process noise covariance matrix are appended in block diagonal fashion--one block for
each satellite, including the hub. The measurement noise covariance matrix is also
appended block diagonally, but the covariance for the drone satellites is different from

that of the hub. For drone satellites,

0.0001>

2
R= (__0-30503) . ®.5)

0.0003 Y
I 05 ||

Here, the range measurement is assumed to be accurate to within 0.1 meters, with three

times less accurate arc lengths. The range from the hub to the drones is the focal length
of the interferometer (either 0.5 or 4 km).
The control gain is calculated using the ‘dlqr’ command in Matlab, which solves

Equations 4.55 and 4.56. The control is calculated by Equation 4.48, and the state error
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and error estimate are propagated by Equations 6.1 and 6.8 respectively. The initial
condition on the error estimate is set equal to the initial condition on the state error.
Equations 6.64-6.67 are used to process the measurements and measurement
estimates. The measurements are assumed to be range, azimuth, and elevation, so
Equations 6.79-6.82 are valid. The “true” measurements would realistically come from
sensors, but for the simulation purposes, they are the known range, azimuth, and
elevations with appended noise. Next, Equation 6.83 (filled in by Equations 6.84-6.93) is
calculated. Finally, the Kalman filter algorithm is implemented with Equations 6.39,
6.74, 6.62, and 6.75 respectively. The initial estimation error covariance for the hub

satellite is

86.4°
86.4°
86.4” |

This assumes about 1 km accuracy for position (10 times greater than measurement noise
covariance) and 1 meter per second for velocity. The 86.4 term is the conversion to
kilometers per day from meters per second. For drone satellites, the tolerance is much
more accurate due to the proximity from the drones to the hub as compared to the hub to
the earth. Assuming position accuracy of 1 m and velocity accuracy of 1 millimeter per

second, the initial estimation error covariance for drone satellites is
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Finally, the whole process is repeated at each epoch, starting with loading the appropriate
continuous dynamics matrix from Generator. The Lissajous orbit Matlab simulation is
given in Appendix C.
8.2.2 Lissajous Orbit Simulation Results

The simulation of a satellite maintaining a Generator based Lissajous orbit around
L2 provides three main results. The first is how well the satellite stayed its course, the
second is how well the Kalman filter performed, and the third is how much fuel was
necessary.

Figure 10 shows the tracking errors plotted against time for one simulation.
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Figure 10. Hub tracking errors
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The plots on the left are position tracking errors, and the plots on the right are velocity
tracking errors. Running many simulations, it can be seen that the steady-state position
tracking errors are within 0.25 km for each direction, and the steady-state velocity
tracking errors are within 7.5e-4 meters per second for each direction.

Figure 11 shows the estimation errors of the hub satellite for one simulation.
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Figure 11. Hub estimation errors (one simulation)
The plots on the left are the position estimation errors, and the plots on the right are the
veloéity estimation errors. The blue lines represent the actual estimation errors, and the
red lines represent the three-sigma value of the covariance. For any epoch, k, the three-

sigma value of the covariance is calculated by

30, =3P (HL)) (8.8)
30,, =13/ (H)(2,2) (8.9)
30, =+3\JF.(+)(3.3) ‘ (8.10)
30y =13P (H)(4.4) (8.11)
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30, =13\ P, (+)(5.5) (8.12)

30, =3P, (+)(6,6) . (8.13)

Because the estimation errors are based on randomness, many simulations must be run to

determine useful results. Figure 12 shows the estimation errors of a dozen simulations.
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Figure 12. Hub estimation errors (12 simulations)
The estimation errors lie within the three-sigma values of the covariance with very few
exceptions. The position estimation errors are within 250 meters, and the velocity
estimation errors are within 2e-4 meters per second.

Figure 13 shows the control effort over the course of one simulation.
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Figure 13. Hub control effort

To determine the

amount of fuel, the velocity change, or AV, is needed. The AV in each direction is

found by numerical integration:

(8.14)

(8.15)

(8.16)

where 7T is the maneuver interval. The absolute value of the control is taken because the

direction of the maneuver has no bearing on the fuel used. The total AV for one

simulation is calculated by

AV = AV, +AV, +AV,.
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Averaging the determined AV from a dozen simulations, the AV required to keep a
satellite in a Lissajous orbit about L2 for 359 days is approximately 0.38 meters per

second. Humble® gives the equation relating propellant mass to AV as

-AV
m,,, =m [1 —er ] : (8.18)

where m,,  is the propellant mass, m, is the initial spacecraft mass, Isp is the specific

prop
impulse of the thruster, and g is the gravitationél acceleration constant 9.81 meters per
second squared. From the Stellar Imager IMDC, Asato® gives the initial spacecraft mass
to be 550 kg for the hub and 100 kg fof a drone. Also, the Isp for the low-thrust, high-Isp
thruster is assumed to be 10000 seconds. Therefore, the amount of propellant needed to
maintain a Lissajous orbit for 359 days is less than 2.2 grams for the hub and less than 0.4

grams for each drone.

8.3 Formation Slewing

A key part of the SI mission is to image many stars. Following a Lissajous orbit
around L2, SI could view the entire sky approximately every half-year while slewing
about just the radial (x) axis. This will also maintain the aiming angle perpendicular to
the sun. The formation slewing simulation follows a similar algorithm as the Lissajous
orbit simulation.
8.3.1 Formation Slewing Simulation Development

First, the number of satellites to be simulated, the maneuver interval in minutes,
and the simulation length in hours are specified. Also, variable are the place in the

Lissajous orbit, ranging from the first day to the 358", and the slew angle. For
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continuity, the maneuver interval will be set to 1 minute and the length of the simulation
to 24 hours. These 24 hours will occur from the second to the third day as modeled by
Generator. Different slew angles will be examined.

The reference Lissajous orbit and dynamics are loaded from Generator, based
upon the desired location in the orbit, and converted to the proper units. Similar to the
Lissajous orbit simulation, the continuous control-mapping matrix used is Equation 3.5.
The state transition matrix is approximated by Equation 3.3, truncating after the quadratic
term. The continuous state weighting matrix is given in Equation 8.1, and the continuous
control weighting matrix is given in Equation 8.2. The strength of the process noise is

different from the Lissajous orbit simulation,

[0 ]
0
= . 8.19
Q. le—24 (8.19)
le—24

i le—24|
The strength of the process noise is set at a value large enough to be noticed, but not so
much as to constrict or destabilize the system. The systeﬁl is then discretized using
Equations 4.14, 4.25, 4.26, 4.27, and 4.28. One key difference between the formation
slewing simulation and the Lissajous orbit simulation is the maneuver interval or time
step. In the Lissajous orbit simulation, the time step, 7, is in days. In the formation
slewing simulation, the time step, d7, is in minutes, and must be converted to days by

dividing by 1440. This is then used for determining the state transition matrix and

evaluating Equations 4.14, 4.25, 4.26, 4.27, and 4.28. The discrete process noise
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covariance is calculated by Equation 6.59. The measurement noise covariance matrix is
given by Equation 8.4 for the hub and Equation 8.5 for the drones.

The initial conditions of the Stellar Imager formation are coded into the
simulation. The assumption is that the satellites start perfectly in formation, and slew to
the new formation over the course of a day. The new slewed formation is the desired
reference. The geometry of both the initial formation and slewed formation are explained
in detail,

To build the initial formation, the hub spacecraft is assumed to be at the center of
a sphere, on which the drones lie. The x direction of the hub-centered Cartesian
coordinate system is parallel to and in the same direction as the radial axis of the earth-
centered rotating coordinate system used by Generator. The y direction of the hub-
centered system is parallel to and in the same direction as the along-track direction of the
carth-centered system. The z direction of the hub-centered system is parallel to and in the
same direction as the cross-track direction of the earth-centered system. Figure 14 shows

the relationship between the two coordinate systems.

cross-track

along-track

Figure 14. Hub-centered Cartesian coordinate system
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From Figures 6 and 7, we see that the hub is not actually at the center of the sphere, but
that will be taken into account later. The drones’ positions are expressed in the spherical

coordinates, r, @, and ¢ , which relate to the hub-centered Cartesian coordinates by

x =rsin(f), (8.20)
y =rcos(@)sin(¢), (8.21)

and
z=rcos(@)cos(®). (8.22)

The radial coordinate, r, is the distance from the hub to the drone and always equals the

radius of the sphere, which is twice the desired focal length. The ¢ coordinate is

measured from the positive z axis toward the positive y axis. Standing on the positive x
axis and looking back, a positive rotation is clockwise. The 8 coordinate is measured
from the position in the y-z plane along the sphere in a clockwise direction when
considered from the positive z axis looking back.

Initially, the center of the formation will be placed directly behind the hub in the

along-track direction. Thus,

6., =0 (8.23)
and
¢, = 3—”, (8.24)
2
where 0°  and ¢°, are initial coordinates corresponding to an imaginary central drone

satellite. There are 30 drones for the SI mission, so 15 have a ¢° coordinate greater than

(i}
cent *

¢° ., and 15 have a ¢° coordinate less than ¢

cent

Knowing that the maximum distance

82




between drones is 0.5 km, or 0.25 km to the imaginary central drone, the coordinates can

be calculated by

r

o =g+ sm“[o25 ] (8.25)

where i represents the 2™ through 16™ satellite (the hub being number 1), and

=16 . +(025
¢! ¢c,,.,——1—5-— [r ) (8.26)

where i represents the 17 through 31% satellite. The 8° coordinates can be determined

in a similar fashion, for i from 2 to 31,

6 =6_, +ésin B (—0'25 ) (8.27)

r

where j is an integer between —15 and 15, such that each satellite, i, has a unique j. This
formation is a Golomb®! rectangle laid out on a spherical surface rather than a plane. The

spherical coordinates for each drone and the imaginary central drone are intermediately

mtOmtOmtO

transformed to Cartesian coordinates by Equations 8.20-8.22, yielding ™x;, ™y,’, " z;,

0

cent ? ycem’

x and z_ . Finally, the satellites are translated by half of the imaginary central

cent *

coordinates to account for the hub being halfway between the origin of the sphere and the

surface of the sphere:
0
X? =intx:) _ Xeent (8.28)
2
yO
yr=ty) - e (8.29)
2
. Zo
z)="z) —-ZL (8.30)

The drones initially start with zero relative velocity to the hub, so for i from 2 to 31,
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#=y)=z=0. (8.31)

The reference states are built by rotating the formation through a slew angle, o

The rotation is about the hub-centered x axis. Thus, for i from 2 to 31,

97 =9 -c, (8.32)
07 =6;, (8.33)
O =P — X, (8.34)
and
6.7, =6,, =0. (8.35)

These spherical reference coordinates are plugged into Equations 8.20-8.22, which yields

the intermediate ™x/7, ™ y?, ™27, x’7, yZ.,and z7,. Just as in Equations 8.28-

x cent ?

8.30, the drones must be translated by half of the imaginary central drone position:

x7
x/7 ="y — 2"' (8.36)

re 1nf T ycmt
yi7 ="y 5 (8.37)

. z'd
gf gt L (8.38)

No relative velocities between the hub and drones are desired, so for i from 2 to 31,
9 =y =77 =0. (8.39)
The drones’ reference states do not change over the course of the simulation.
The hub satellite’s initial and reference conditions are treated differently than the
drones’, because the hub’s reference states change over the duration of the simulation.

From Generator, the hub reference conditions are known at the beginning of the




simulation, x/7°, and at the end of simulation, one day later, x** . The initial
conditions are set equal to the known starting reference conditions,

x! =x7°, (8.40)
The hub reference states at some epoch, k, during the simulation are determined by linear

interpolation,
refk _( refend ref0 dT ref0
X, =X —x] )—-1 k+x7". (8.41)

The control and estimation algorithm from one epoch to another are identical to
the Lissajous orbit simulation detailed at the end of Section 8.2.1. The lone difference is
that the dynamics are assumed to be time-invariant over the course of the simulation
rather than being updated at each epoch; therefore, the control gain is solved for once and
held constant throughout the simulation. The formation slewing Matlab simulation is
given in Appendix D.

8.3.2 Formation Slewing Simulation Results

The formation slewing simulation provides a plethora of useful results. The hub
tracking error, estimation error, and control are found for focal lengths of both 0.5 and 4
km. Each drones’ tracking error, estimation error, and control are determined as well.
For conciseness, only the results for two drones will be shown (satellite numbers 2 and
31). Two slewing angles are investigated, 90 degrees and 30 degrees. Figure 15 provides

a clear image of the entire SI formation slewing 90 degrees, with a 0.5 km focal length.

85




Formation

0.5 . 0.5
? %)
_ %% el - 2 D%
E o X i 0 E of-.- %%
N o B : R %
§ o§ ®©&%
41.5\———W— 0.5
0.5 0 0.5 0.5 0 0.5
x (km) x (km)
0.5
0.5

z (km)
o

R o 0

X ST 0

-0.5 0 0.5 y (km) 0.5 -0.5 x (km)
y (km)

Figure 15. SI formation before and after 90 degree slew (0.5 km focal length)

The magenta circles represent drones at the beginning of the simulation, and the red
circles represent drones at the end of the simulation. The hub is the black asterisk at the
origin. The upper-right plot illustrates the Golomb®! rectangle formation projected into

the x-z plane. The lower-left plot clearly shows the drones slewing 90 degrees about the

hub-centered x axis.

Figures 16-18 show the tracking errors for the hub and 2 drones. Although the
plots are specific to a 90 degree slew with a 0.5 km focal length, they are qualitatively

representative of all the different slew angle and focal length scenarios.
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Figure 16. Hub tracking error (90 degree slew and 0.5 km focal length)

drone 2 tracking error
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Figure 17. Drone 2 tracking error (90 degree slew and 0.5 km focal length)
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drone 31 tracking error
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Figure 18. Drone 31 tracking error (90 degree slew and 0.5 km focal length)

For both 90 degree and 30 degree slews with either a 0.5 or 4 km focal length, the hub

tracks to within 50 meters of its reference position and to within 5 millimeters per second

of its desired velocity. The drones all track to within 3 meters of their desired reference

positions and to within 1 millimeter per second of their desired zero velocities.

Table 6 lists the total position tracking error after one day for the different

scenarios when noise is turned off.

Focal length | Slew angle | Hub position | Drone 2 position | Drone 31 position
(km) (deg) tracking error | tracking error | tracking error (m)
(m) (m)
0.5 90 8.33e-6 3.075e-6 3.075e-6
0.5 30 3.05¢-6 1.126e-6 1.126¢-6
4 90 7.35¢-5 2.713e-5 2.713e-5
4 30 2.69¢-5 9.93e-6 9.93¢-6

Table 6. Formation slewing position tracking errors with no noise

For all scenarios, neglecting noise, the velocity tracking error is essentially zero after one

day. If noise is turned off, the tracking errors go asymptotically to zero, as expected with
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a linear quadratic regulator control strategy. Clearly, the noise and estimation errors have
a significant effect on the tracking errors.
Figures 19-22 show the estimation error results of a dozen simulations for the hub

with varying slew angles and focal lengths.
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Figure 19. Hub estimation error for 0.5 km focal length and 30 degree slew
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Figure 20. Hub estimation error for 0.5 km focal length and 90 degree slew
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Figure 21. Hub estimation error for 4 km focal length and 30 degree slew
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Figure 22. Hub estimation error for 4 km focal length and 90 degree slew
The red lines are the three-sigma values calculated by Equation 8.8-8.13. The hub’s
steady-state position three-sigma values are about 50 meters, and the steady-state velocity
three-sigma values are about 1 millimeter per second for all scenarios. The estimation
errors are within the three-sigma values with few exceptions. The three-sigma values

change for each simulation (because the noise is random), but the change cannot be seen
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for the hub because the order of magnitude of change is much, much less than their

overall value.

Figures 23-26 show the estimation errors for a dozen simulations for the first

drone satellite (satellite number 2).
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Drone 2 estimation errors for 0.5 km focal length and 90 degree slew
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Figure 25. Drone 2 estimation errors for 4 km focal length and 30 degree slew
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Figure 26. Drone 2 estimation errors for 4 km focal length and 90 degree slew
Drone 2’s estimation crro-rs are, with few exceptions, within the three-sigma values for
all scenarios. The three-sigma value change from one simulation to another can be seen
in the drone estimation error plots. The range from the hub to the drone is either 0.5 or 4
km, whereas the range from the hub to the earth is about 1.5 million km.

Figures 27-30 show the estimation errors of a dozen simulations for the last drone

(satellite number 31).
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Figure 27.
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Drone 31 estimation errors for 0.5 km focal length and 30 degree slew
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Figure 29. Drone 31 estimation errors for 4 km focal length and 30 degree slew
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Figure 30. Drone 31 estimation errors for 4 km focal length and 90 degree slew
Drone 31’s estimation errors are within the three-sigma values with few exceptions. The
steady-state position three-sigma values are less than 0.1 meters for each drone in every
scenario. The steady-state velocity three-sigma values are less than 1 micrometer per
second for each drone in every scenario.

From the control efforts, the directional AV can be determined for each satellite:
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AV, =Y, (8.42)
= 1440
1440 dT
AV, =) lu 8.43
y ;I y|l440 ( )
1440 dT
AV = _ 8.44
: ;qu 1440 .49

The total AV is found from the directional AV ’s by Equation 8.17. The differences
between Equations 8.14-8.16 and Equations 8.42-8.44 are the number of maneuvers over
the course of the simulation and the maneuver interval. The formation slewing
simulation runs for one day, with one maneuver per minute (1440 maneuvers), whereas
the Lissajous orbit simulation runs for 359 days with one maneuver per day. Table 7

shows the average AV ’s for a dozen simulations for the various scenarios.

Focal Length | Slew Angle | Hub AV (m/s) | Drone 2 AV (m/s) | Drone 31 AV (m/s)
(km) (deg)
0.5 30 1.0705 0.8271 0.8307
0.5 90 1.1355 0.9395 0.9587
4 30 1.2688 1.1189 1.1315
4 90 1.8570 2.1907 2.1932

Table 7. Average formation slewing AV ’s
The larger the angle the formation slews through, the more AV is needed. Also, the
larger the focal length, the more AV required. Table 8 shows the corresponding
propellant masses needed to achieve the AV ’s given in Table 7, with the assumptions
that the Isp of the low-thrust thrusters is 10000 seconds, the initial mass of the hub is 550

kg, and the initial mass of each drone is 100 kg.
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Focal Length | Slew Angle | Hub m,,,, (g) | Dronc2 m,,, (g) | Drone 31 m,,, (g)
(km) (deg)
0.5 30 6.0018 0.8431 0.8468
0.5 90 6.3662 0.9577 0.9773
4 30 7.1135 1.1406 1.1534
4 90 10.4112 2.2331 2.2357

Table 8. Average formation slewing propellant masses

When the noise is turned off, the required AV and propellant mass are reduced

significantly. Table 9 shows the AV ’s and Table 10 shows the corresponding propellant

masses when noise is removed.

Focal Length | Slew Angle | Hub AV (m/s) | Drone 2 AV (m/s) | Drone 31 AV (m/s)
(km) (deg)
0.5 30 0.0504 0.0853 0.0998
0.5 90 0.1581 0.2150 0.2315
4 30 0.4420 0.5896 0.6441
4 90 1.3945 1.9446 1.9469

Table 9. Required AV ’s for formation slewing cases without noise

Focal Length | Slew Angle | Hub m,,,, (g) | Drone 2 m,,, (g) | Drone 31 m,,, (g)
(km) (deg)
0.5 30 0.2826 0.0870 0.1017
0.5 90 0.8864 0.2192 0.2360
4 30 2.4781 0.6010 0.6566
4 90 7.8182 1.9822 1.9846

Table 10. Required propellant masses for formation slewing cases without noise
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8.4 Formation Reorientation

For some stars, one snapshot from the SI formation will not provide enough
sampling data for sufficient resolution. In these cases, the drones must rotate 90 degrees
and take another snapshot. In Section 8.3.1, an assumption is made that the drones are
located behind the hub, in the negative y direction. Following this assumption, the 90
degree reorientation will be a rotation about the y axis. The aim from the drones, through
the hub, to the desired star, is maintained with such a reorientation.

8.4.1 Formation Reorientation Simulation Development

The simulation development for the formation reorientation is nearly identical to
the formation slewing simulation in Section 8.3.1. The simulation is set to run for one
day with a maneuver interval of one minute. The place in the Lissajous orbit is variable.
Generator gives the dynamics and hub reference for the corresponding place in the
Lissajous orbit. The continuous state-weighting matrix, control-weighting matrix, and
process noise strength are given in Section 8.3.1, as well as the method for discretizing
and solving for the control gain. The control gain for the formation reorientation
simulation is identical to the formation slewing simulation. The initial conditions are
built through Equations 8.20-8.31.

The difference between the formation reorientation and formation slewing
simulations is the desired reference states of the drones. The formation slewing reference
states are based on a variable slew angle, &, rotation about the x axis, whereas the
formation reorientation reference states are based on a 90 degree rotation about the y axis.

The imaginary central drone has the same reference conditions as initial conditions,
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ocrt = Do =37” (8.45)
and

67 =0° =0. (8.46)
Setting

¢ =00 +¢° (8.47)
and

07 =¢? -¢° ., (8.48)

for i from 2 to 31, gives the drones’ reference positions. The rotation is 90 degrees
counterclockwise about the y axis when looking back from the hub. Once again, zero
relative velocity between the drones and the hub is desired, so Equation 8.39 holds.

The control and estimation algorithm from one epoch to another is identical to the
formation slewing algorithm. The formation reorientation Matlab simulation is given in
Appendix E.

8.4.2 Formation Reorientation Simulation Results

The formation reorientation simulation provides similar results as the Lissajous
orbit and formation slewing simulations. The tracking errors, estimation errors, and
control efforts of the hub and drones are determined. From the control effort, the
required AV and corresponding propellant mass can be found. Figure 31 shows the first
four drones of the formation before and after reorientation (with a 0.5 km focal length).

Only four drones are pictured for clarity.
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Figure 31. Formation reorientation (0.5 km focal length)
The scale is in kilometers in all four pictures. The plot in the upper-right shows the
projection of the formation in the x-z plane. The magenta circles are the drones at their
initial conditions, and the red circles are the drones after the simulation. The formation
appears to have rotated clockwise 90 degrees about the y axis, but the hub is into the
page, so the rotation is counterclockwise when viewed from the hub.
Figures 32-34 show the tracking errors for the hub, the first drone (#2), and the

last drone (#31) for the 0.5 km focal length case.
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Figure 32. Hub tracking error (0.5 km focal length)
The hub tracks to within 40 meters of its reference position, and to within 8 millimeters

per second of its reference velocity for both focal lengths.
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Figure 33. Drone 2 tracking error (0.5 km focal length)
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Figure 34. Drone 31 tracking error (0.5 km focal length)
Every drone tracks to within 4 meters of its reference position, and to within 1.5
millimeters per second of its desired zero velocity for both focal lengths.
When noise is turned off, the satellites track much better than when the noise is
included. Table 11 shows the total position tracking errors for the various satellites after

one day, when noise is eliminated.

Focal length (km) Hub position Drone 2 position Drone 31 position
tracking error (m) tracking error (m) tracking error (m)

0.5 2.147¢-6 0.792¢-6 0.793e-6

4 2.146¢-6 0.792¢-6 0.793e-6

Table 11. Formation reorientation position tracking errors with no noise

The tracking errors go asymptotically to zero, and the velocity tracking errors are

essentially zero at the end of a day. Just as with the formation slewing simulation, the

noise, and in turn the estimation errors, are the largest reason for imperfect tracking.

Figures 35 and 36 show the hub estimation errors for a dozen simulations with the

different focal lengths.
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Figure 35. Hub estimation errors (0.5 km focal length)
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Figure 36. Hub estimation errors (4 km focal length)
The steady-state x three-sigma value is about than 30 meters. The steady-state y and z
three-sigma value is about 50 meters. The steady-state velocity three-sigma values are
about 1 millimeter per second. The hub estimation errors stay within the three-sigma

values except for rare occasions.
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Figures 37 and 38 show the estimation errors of a dozen simulations for the first
drone (satellite #2), and Figures 39 and 40 show the estimation errors of a dozen
simulations for the last drone (satellite #31).
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Figure 37. Drone 2 estimation errors (0.5 km focal length)
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Figure 38. Drone 2 estimation errors (4 km focal length)

103




- Q
€ £
- oy
& g
= e
] -
- [
3 @
@ -
x 2
x
- 2
E £
< N
5 g
£ ®
@ -
- @
0 @
@ -
> ]
>
- ®
£ E
= N
8 g
1 @
L] -
-— @°
w o
@ -
N 8 .
0 500 1000 1500 N0 500 1000 1500
time (min) time (min)

Figure 39. Drone 31 estimation errors (0.5 km focal length)
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Figure 40. Drone 31 estimation errors (4 km focal length)
For any drone and either focal length, the steady-state position three-sigma values are less
than 0.1 meters, and the steady-state velocity three-sigma values are less than le-6 meters

per second. Also, the estimation errors stay within the three-sigma values with rare

exceptions.
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From Equations 8.42-8.44 and Equation 8.17, the AV can be determined, for
each satellite, from the control effort required to reorient the formation. Table 12 gives

the average AV ’s from a dozen simulations to reorient the formation.

Focal Length (km) | Hub AV (m/s) Drone 2 AV (m/s) | Drone 31 AV (m/s)
0.5 1.0126 0.8421 0.8095
4 1.0133 0.8496 0.8190

Table 12. Average formation reorientation AV ’s
The focal length has no discernible effect on the AV needed to reorient the formation.
This makes sense because the rotation is about the y axis, and the focal length is assumed
to be the measurement along the y axis from the hub to the drones. Table 13 giv.es the
propellant masses that correspond to Table 12. Once again, the hub is assumed to have
an initial mass of 550 kg, the drones have initial masses of 100 kg, and the Isp’s of the

ideal thrusters are 10000 seconds.

Focal Length (km) Hub m,,,, (g) Drone 2 m,,,, (g) | Drone 31 m,,, (g)
0.5 5.6771 0.8584 0.8252
4 5.6811 0.8661 0.8349

Table 13. Average formation reorientation propellant masses

Without noise, the AV needed to reorient the formation is much less, as shown in

Table 14.

Focal Length (km) Hub AV (m/s) Drone 2 AV (m/s) | Drone 31 AV (m/s)
0.5 0.0408 0.1529 0.1496
4 0.0408 0.1529 0.1495

Table 14. Required AV for formation reorientation without noise
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Table 15 gives the propellant masses that correspond to Table 14.

Focal Length (km) Hub m,,,, (g) Drone 2 m,,,, (g) | Drone 31 m,,, (g)
0.5 0.2287 0.1623 0.1525
4 0.2287 0.1623 0.1524

Table 15. Required propellant masses for formation reorientation without noise
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9. CONCLUSION

| In Section 2, the equations of motion for the circular restricted-three body
problem were investigated, and the libration point concept was addressed. By reducing
the circular restricted three-body problem to collinear libration points, and linearizing the
equations of motion, the problem was simplified enough to apply it to a linear-quadratic-
regulator control scheme.

In Section 3, the optimal control was found with the linear-quadratic-regulator
method. By making a judicious infinite horizon assumption, the control gain becomes
constant. In Section 4, the continuous system was sampled to model a more realistic
discrete system, and the discrete optimal control law was found. In Section 5, the system
was augmented for multiple satellites, and the fundamentals of formation flying
explained.

In Section 6, an observer was introduced to estimate the states of a system by
using incoming measurements. The optimal method of updating the estimates was given,
to reduce the unwanted process and measurement noise. Hence, the Kalman filter was
derived. The Kalman filter was adapted to accommodate nonlinear measurements, with
Spccial emphasis on the range, azimuth, and elevation measurements common to
spaceflight.

Section 7 gave a background to the Stellar Imager mission, and its performance
and design requirements. The preliminary formation, orbit, and control designs were
explored in detail. Finally, in Section 8, a reference orbit and associated dynamics
specific to the sun-earth L2 point were determined. A more realistic orbit and associated

dynamics were found with the use of Generator. Three simulations were developed to
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analyze various aspects of the Stellar Imager mission. Using the control and estimation
methods developed throughout the thesis, the simulations revealed preliminary tracking
errors, estimation errors, and required control efforts for all satellites in the formation.
From the control efforts, the necessary AV ’s and propellant masses for orbit
maintenance, formation slewing, and formation reorientation were determined.

The control strategy and Kalman filter provided satisfactory results. The hub
satellite tracks to its reference orbit sufficiently for the SI mission requirements. The
drone satellites, on the other hand, track to only within a few meters. Without noise,
though, the drones track to within several micrometers. The first tier of the proposed
control scheme for SI requires the drones to track within centimeters. This éo_uld be
accomplished with better sensors to lessen the effect of the process and measurement
noise. Tuning the controller and varying the maneuver intervals should provide
additional savings as well. The Kalman filter performed such that the estimation errors
were for the most part within the three-sigma values. The propellant mass and AV
results provide a minimum design boundary for the SI mission. Additional propellant
will be needed to perform all attitude maneuvers, tighter control requirement adjustments,
and other mission functions.

In the future, many research opportunities exist for formation flying satellite
control, libration point dynamics, and the Stellar Imager and other similar missions.
Specifically for SI, the attitude dynamics and control problem must be examined and
integrated into the translation control problem explored in this thesis. Also, non-ideal
thrusters must be modeled as weill. In simulation, an implicit assumption is made that the

thrusters give perfect, impulsive accelerations determined by the control law.
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Realistically, thrusters are misaligned, non-impulsive, and have upper and lower bounds
on force outputs. Collision avoidance is another problem. In the simulations, the drones
are imaginary points that may pass through each other. In actuality, collisions would
cause catastrophic satellite failures. System reliability and determination must be
accomplished as well. How a drone failure is detected and how the formation responds to
such failures are questions that must be addresed. Nonlinear control and estimation
approaches should be considered also. For the nanometer level preciseness of the second
and third control tiers, unique control strategies and algorithms must be developed and

tested.
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Appendix A: Generator-to-Matlab Reference Orbit Conversion Script

getref.m

disp('loading reference');
posbig=textread('pos.txt', '$s', 'delimiter', '\n"');
$pos.txt is Generator output
velbig=textread('vel.txt', '$s','delimiter', '\n");
$vel.txt is Generator output
for i=1:359,
for j=1:3,
p(j)=str2num(posbig{ (i-1) *3+3j});
v(j)=str2num(velbig{ (i-1)*3+j});
end
v=v*86.4;
stater{i}=[p';v'];
end
disp('reference loaded');
clear posbig velbig p v i j
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Appendix B: Generator-to-Matlab Dynamics Conversion Script

getA.m

disp('loading dynamics');
Abig=textread('Amatrices2.txt',6 '$s', 'delimiter','\n');
$Amatrices2.txt is Generator output
for i=1:359,
for j=1:36,
a(j)=str2num(Abig{(i~1)*87+51+3j});
end
Agen{i}=reshape(a,6,6)';
end
disp('dynamics loaded');
clear Abig a i jJ
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Abstract:

A growing interest in formation flying satellites demands development and
analysis of control and estimation algorithms for station-keeping and formation
maneuvering. This thesis discusses the development of a discrete linear-quadratic-
regulator control algorithm for formations in the vicinity of the L2 sun-earth libration
point. The development of an appropriate Kalman filter is included as well. Simulations
are created for the analysis of the station-keeping and various formation maneuvers of the
Stellar Imager mission. The simulations provide tracking error, estimation error, and
control effort results. From the control effort, useful design parameters such as AV and
propellant mass are determined. For formation maneuvering, the drone spacecraft track
to within 4 meters of their desired position and within 1.5 millimeters per second of their
desired zero velocity. The filter, with few exceptions, keeps the estimation errors within
their three-sigma values. Without noise, the controller performs extremely well, with the
drones tracking to within several micrometers. Each drone uses around 1 to 2 grams of
propellant per maneuver, depending on the circumstances.
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